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Abstract

In this paper we (i) put forward a simple notational device clarifying the, un-
deniable but generally ignored, role of density dependence in determining
evolutionarily stable life histories, (ii) use this device to derive necessary
and sufficient conditions for (a) the existence of an evolutionary extremisa-
tion principle, and (b) the reduction of such a principle to straight r - or
R0-maximisation, (iii) use the latter results to analyse a simple concrete
example showing that the details of the population dynamical embedding
may influence our evolutionary predictions to an unexpected extent.
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1 Introduction

The literature is replete with statements that evolutionary predictions about be-
havioural, c.q. life history, parameters should be based on the maximisation of
individual lifetime reproductive success,R0 (Stearns, 1992; Roff, 1992; Charnov,
1993; Charlesworth, 1994, provide surveys), or else the intrinsic rate of natural
increase, r (Stearns, 1992; Roff, 1992; Charlesworth, 1994; Caswell, 1989). In
the former case it is often added, rather confusingly, that due to density de-
pendence necessarily R0 = 1 (see e.g. Charnov, 1993, and its review by Maynard
Smith, 1993). No doubt most authors dealing with life history theory know how
to interpret the last statement, and are aware of the implicit limitations of the
traditional optimisation considerations. However, some asking around indic-
ated that this awareness (i) has little diffusion among experimentalists, and
(ii) appears rather dim even among most theorists. Our quick and dirty sur-
vey also revealed that probably the main cause of this small awareness is that
advertising positive predictions gives more kudos than repeatedly spelling out
their limitations. Yet we feel that precisely delimiting the applicability of par-
ticular evolutionary arguments is a worthy effort, not only for philosophical
but also for practical reasons: By extending the limits as far as one can, one
usually also extends the effective toolbox.

In this paper we put forward three closely related messages:
(i) We argue that adhering to a simple explicit notation fosters the awareness of
some implicit limitations of life history arguments. Our notation only differs
from the traditional one in that the roles of (a) the life history traits, and in
particular (b) the environment, in determining the population dynamical beha-
viour of an individual, are made visible. This visibility also has the advantage of
removing the minor confusion about R0 simultaneously being maximised and
kept equal to 1. We sincerely ask you to adopt this notation, or else to develop
your own variant of it. The use of more simplified notations too often misleads!
(ii) We give necessary and sufficient conditions for the eventual outcome of
the evolutionary process to be characterisable by some optimisation principle,
and more in particular by straight r - or R0-maximisation. These conditions are
phrased in mathematical, structural, terms only. So far we haven’t been able
to delimit clear classes of corresponding physiological mechanisms. Dreaming
up simple classes of mechanisms subsumed under our conditions is easy. We
shall give some examples. But how wide exactly is the net?
(iii) We show how the details of the population dynamical embedding can in-
fluence the evolutionary predictions, by using the results from (ii) to analyse a
particularly simple sample model, closely akin to traditional life history mod-
els. Our explicit notation also alerted us to the fact that for this example the
life history parameters determined in the field show patterns which differ in a
non-trivial way from the patterns in the parameters determined under labor-
atory conditions. This observation may act as an antidote to the, apparently
common, belief that the message from (i) is for all practical purposes empty.

2 Setting the stage: fitness, density dependence, and
ESS considerations

Our starting point is that there is one master fitness concept: the hypothetical
average rate of exponential growth ρ which results from the thought experi-
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ment in which we let a clone of the type under consideration grow in a station-
ary environment (Charlesworth, 1980, 1994; Tuljapurkar, 1989, 1990; Caswell,
1989; Metz et al., 1992; Rand et al., 1994; Ferrière & Gatto, 1995).

Remark 2.1 The reasons for this particular choice of a definition are: (i) It
is consistent with the use of the word fitness in the context of simple evolu-
tionary scenarios on all points that count in a long term evolutionary context.
(ii) For a large range of ecological scenarios it is sufficiently precise to yield a
definite number. (iii) The number so defined is almost the minimal informa-
tion necessary to deduce predictions about both evolutionary final states and
non-equilibrium evolutionary patterns. See the arguments below, and Metz et
al. (1995) for a further elaboration. �

Our verbal definition immediately brings out that ρ necessarily depends
both on the type X of the clone and the environment E in which it supposedly
lives. To keep our arguments, and our heads, clear we should explicitly account
for this dependency in the notation, by writing

ρ(X, E) (1)

(compare Diekmann & Metz, 1994, and Mylius & Diekmann, 1995).
A possible further potential source of confusion is that E necessarily refers

to the environment as perceived by the individuals. This means that for in-
stance density and types of conspecifics come as part and parcel of E (Michod,
1979; Metz & Diekmann, 1986; Pásztor, 1988; Metz & de Roos, 1992; Diek-
mann & Metz, 1994; Pásztor et al., 1995). Yet in our thought experiment we
considered those densities as given stationary random functions of time, not
influenced by the growth of our clone.

The justification of this mental somersault is that we should think of fit-
ness as the rate of invasion of a rare mutant multiplying amidst a large res-
ident population. This presupposes that all evolutionarily relevant resident
(sub)populations of the species are large, so that initially the influence of the
mutant on the environment is properly diluted. The mutant heterozygote
swarm reproduces faithfully by crossing with the residents. If dilution fails
due to the interaction ranges of the individuals containing but a few more per-
manent sparring partners, we can sometimes take recourse to inclusive fitness
considerations (Taylor, 1988a,b, 1989), but in ultimate generality the concept
of fitness resists further extension. Luckily, the range of conditions covered is
sufficiently large that we need not be overly bothered.

The corollary is that predictions about the trait values favoured by evolution
should always derive from an ESS argument (e.g. Roughgarden, 1979; Charles-
worth, 1994; Lessard, 1990):

1. Maximise ρ(X, E) for each given E over all potential trait values, resulting
in a function Xopt(E).

2. Determine for each trait value the environment which it generates as a
resident, Eattr(X).

3. Vary X to find an evolutionarily unbeatable value X∗, i.e., an X∗ such that

Xopt(Eattr(X∗)) = X∗ . (2)

4. Ascertain that the set of trait values X0 from which X∗ is approximated
with non-zero probability through a sequence X0, X1, X2, . . ., such that
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ρ(Xi+1, Eattr(Xi)) > 0, is sufficiently large to warrant consideration of X∗

as a potential evolutionary trap.

The above description is only meant as a definition, not as a practical al-
gorithm. The general procedure 1 to 4 has a habit of exceeding the available
computer capacity, except in the simplest possible cases. Practical algorithms
circumvent this by using special properties of particular cases.

One immediate general simplification is that even in the definition of an ESS
we may restrict the attention to those E that can occur as Eattr(X) for some X.
As this restriction becomes essential in the arguments below we introduce the

Convention Whenever we refer to E we shall mean only those E that can occur
as Eattr(X) for some X.

The notional index attr alludes to the assumption that the population dy-
namics converges to an attractor. For later use we note that on this attractor
necessarily

ρ(X, Eattr(X)) = 0 . (3)

Remark 2.2 In general it cannot be excluded that the function Eattr is multi-
valued. In theory this does not invalidate our arguments, except that our
present phrasing is definitely lacking in the details. But it may considerably
complicate attempts at applying them in practice. The wording of the special
arguments in sections 3 and 4 happens to apply without change to the multi-
valued case. �

Remark 2.3 In step 4, and only step 4, of the above algorithmic definition
of an ESS, we implicitly invoked a genetical assumption. Whether or not con-
vergence to the unbeatable strategy can occur will also depend on the (non-)-
presence of so-called genetic constraints. The simplest example is that the
unbeatable phenotype can only be produced by a heterozygote, so that the
population can never converge to a monomorphically X∗ condition. We as-
sume that the only constraints that are present are “physiological”, i.e., can be
described in terms of a developmentally realisable subset of the trait space. The
belief is that this assumption guarantees that convergence for the Mendelian
case parallels that for the clonal case, as it allows us to dream up any needed
mutations, including mutations that break up heterotic polymorphisms (com-
pare Hammerstein & Selten, 1994, and Hammerstein, 1996). �

3 When does evolution optimise?

The outcome of the ESS calculation can only be reached by the straightforward
application of some extremisation principle when the function ρ(X, E) satisfies
some rather stringent restrictions.

First we give some definitions. We shall say that the trait vector acts one-
dimensionally whenever there exists a functionψ of X to the real numbers such
that

signρ(X, E) = signα(ψ(X), E) , (4)

for some function α which increases in its first argument. And we shall say that
the environment acts one-dimensionally whenever there exists a functionφ of E
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to the real numbers such that

signρ(X, E) = signβ(X,φ(E)) , (5)

for some function β which increases in its second argument.

Example 3.1 Assume that we only need to deal with constant environments.
Whenever

R0(X, E) = φ(E)R0(X, EV ) , V for virgin, (6)

take
α := ln(R0) , β := ln(R0) , ψ := R0(X, EV ) . (7)

(See section 4.) �

We shall call a function ψ of X to the real numbers with the property that
evolution maximises ψ for any constraint on X an optimisation principle. And
we shall call a function φ of E to the real numbers with the property that
evolution minimises φ(Eattr(X)) for any constraint on X, a pessimisation or
Verelendungs principle.

Proposition 3.1 Models in which the trait vector acts one-dimensionally have an
optimisation principle, and vice versa.

The forward implication is immediate. The somewhat unexpected reverse
implication is spelled out in Appendix A.

Proposition 3.1 is of course a weakened form of the familiar justification for
many of our commonly used optimisation principles: “Being more ‘efficient’ in-
creases your fitness in any relevant environment.” However, the crucial phrase
in that argument, “in any relevant environment”, rarely is mentioned explicitly.

Proposition 3.2 Models in which the environment acts one-dimensionally have
a pessimisation principle, and vice versa.

The forward implication is immediate. The somewhat unexpected reverse
implication is spelled out in Appendix A. In this proof we construct a β such
that (5) holds true for the pessimisation principle φ. This construction also
provided the heuristics for the term Verelendungs principle: Any φ satisfy-
ing (5), with β increasing in its second argument, allows a natural interpretation
as a measure of environmental quality, as perceived through the physiology of
our individuals.

Proposition 3.2 is of course nothing but the ultimate generalisation of two
familiar evolutionary extremisation principles pertaining to the case of pop-
ulation dynamical equilibrium: (i) “Evolution minimises the availability of a
limiting resource”, and (ii) “Evolution maximises total population density if the
individual life history parameters are negatively affected by the total popula-
tion density (and are unaffected by any other environmental variable influenced
by the population)”.

Proposition 3.3 Any pessimisation principle carries an optimisation principle in
its wake and vice versa.

This is easily proved by gauging the “ability to cope” to the “quality of the
environment” through

ψ(X) = −φ(Eattr(X)) . (8)
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This recipe produces a ψ for any φ pried out of an expression for ρ, or
vice versa. But beware, (8) usually doesn’t hold true for a ψ and a φ arrived at
separately. The strongest possible statement that can be made about two ψ’s,
or φ’s, found by different means is that they are necessarily monotonically
related.

The construction used to prove proposition 3.3 has as a corollary:

Proposition 3.4 Whenever the trait vector acts one-dimensionally it is possible
to find a function φ of E to the real numbers, or alternatively, whenever the
environment acts one-dimensionally it is possible to find a function ψ of X to the
real numbers, such that

signρ(X, E) = sign
(
ψ(X)+φ(E)

)
. (9)

However, somewhat unexpectedly the aesthetically pleasing symmetry of (9)
isn’t very helpful, as usually at most one of the functions φ and ψ occurring
in it can be expressed as an explicit formula. In contrast the more relaxed
characterisations of one-dimensional action by means of either (4) or (5) often
can be readily applied.

The arguments in Appendix A are only based on evolutionary unbeatability
considerations. For completeness we summarise some immediately associated
evolutionary attractivity properties as

Proposition 3.5 When evolution operates in a context which allows an optimisa-
tion principle ψ which is at least piecewise continuous, and the supports of any
mutation distribution contains at least the intersection of an ε-neighbourhood of
the trait value of the progenitor X with the developmentally realisable subset X
of the trait space, with ε independent of X:

1. A unique global optimum of ψ has a non-negligible basin of evolutionary
attraction. Better still, it will often be a global evolutionary attractor. This
happens for example when (a) the supports of the mutation distributions
equal X, or (b) ψ is continuous, and there are no local optima other than
the global one.

2. When mutant trait values are restricted to a δ-neighbourhood of X, a par-
ticular non-isolated local optimum of ψ will have a non-negligible basin of
evolutionary attraction whenever δ is sufficiently small.

The application of (8) immediately yields the corresponding proposition for
pessimisation principles.

As a final point we mention that for a one-dimensionally acting environment
φ(Eattr(X)) can be directly determined from

β(X,φ(Eattr(X))) = 0 . (10)

This allows the construction of a simple general algorithm for numerically
analysing any model with a one-dimensionally acting environment: Numerically
maximise ψ defined by (8), where φ(Eattr(X)) is at each iteration step numeric-
ally determined from (10). This way the potentially unpleasant object Eattr(X)
is eliminated before the numerics.

We finish this section with three examples. The first example is essentially
trivial. We put it in to demonstrate the various concepts in rigorous detail, unen-
cumbered by technical distractions. Its second purpose is demonstrating how
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our formal definition of a one-dimensionally acting environment may somehow
carry a wrong suggestion at the mechanistic level. The second example demon-
strates why it may be difficult to find an explicit pessimisation principle from a
given optimisation principle. The third example shows how it may be possible
to find a pessimisation principle for non-equilibrium attractors, leading to an
otherwise non-obvious optimisation principle.

Before starting on the examples we introduce one more piece of notation as
this considerably simplifies their presentation: We shall denote the geometric
mean operator as G,

G(z) := lim
T→∞

T

√√√√√ T∏
t=1

z(t) , (11)

and the logarithm of G as L, i.e.,

L(z) := lim
T→∞

T−1
T∑
t=1

ln(z(t)) . (12)

In order not to unduly complicate the examples we shall moreover proceed as
if reproduction were clonal.

Example 3.2 Consider the following thought experiment. Birds are limited by
the availability of nest sites. These sites have a density s. Only birds who have
obtained a nest site in spring breed. The number of young M which they pro-
duce per capita is an increasing function of their ability to gather energy ψ(X),
where X is the trait which is assumed to be under evolutionary control. We
measure this ability by the number of offspring it produces:

M = ψ(X) . (13)

Old and young survive the winter with a probability p. Next spring, nest sites
are allotted randomly among the survivors. Birds that fail to obtain a site are
removed from the system.

An obvious choice for the condition of the environment in year t as perceived
by a bird, is the total density n of winter survivors, of all trait types together,

E(t) = n(t) . (14)

We shall present side by side a classical population dynamical calculation,
and a calculation along the route laid out above. In neither calculation we take
the obvious shortcuts as this would obstruct their comparison. Please bear
with us, we only want to help you understand the full meaning of our previous
considerations.

We shall distinguish the resident and mutant types by means of the indices
0 and 1. With this notation the population equations become, with i ∈ {0,1},

ni(t + 1) =
(
p (1+Mi)

s
n(t)

)
ni(t)

=
(
p s (1+ψ(Xi))

1
E(t)

)
ni(t) ,

(15)

with
n(t) = n0(t)+n1(t) . (16)
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(For notational simplicity we confine ourselves to initial conditions such that
consistently n(t) > s.)

Applying the definition of ρ to (16) (without already confining the attention
to the Eattr(X) which for this particular model necessarily are constant) results
in

ρ(X, E) = L
(
p s (1+ψ(X)) 1

E

)
= ln(ps)+ ln(1+ψ(X))− L(E) .

(17)

Given the functional form of (17) and the verbal model description with
which we started, one natural choice for φ is

φ(E) := 1
G(E)

, (18)

i.e., we measure the quality of the environment of a bird as the inverse of (the
geometric mean of) the density of competitors which it encounters when it is
searching for a nest site. With this definition we can write

ρ(X, E) = ln(ps)+ ln(1+ψ(X))+ ln(φ(E)) . (19)

From this formula we see that both the trait and the environment act one-di-
mensionally, with

α(ψ(X), E) := ρ(X, E) =: β(X,φ(E)) . (20)

The conclusions that ψ is an optimisation, and φ a pessimisation principle,
won’t come as a surprise. Combining (8) with (10) and (19) leads to the, equi-
valent, optimisation principle

ψ′(X) := −φ(Eattr(X)) = − 1
p s (1+ψ(X)) . (21)

Our first choice was to have our measure for the quality of the environ-
ment, φ, inversely proportional to the density of conspecifics. The matching
“ability to cope”,ψ′, given by (21), is, of course, monotonically related to energy
gathering abilityψ. A measure of environmental quality which for constant en-
vironments matches the optimisation principle ψ, is given by

φ′(E) = 1− 1
p s φ(E)

= 1− G(E)
p s

. (22)

For each of these pairs

signρ(X, E) = sign
(
ψ′(X)+φ(E)

)
= sign

(
ψ(X)+φ′(E)

)
. (23)

For the population dynamical invasion calculation we set E(t) = n0(t) to
get

n(t) = n0 = p s (1+ψ(X0)) , (24)

and

n1(t + 1) = p s (1+ψ(X1))
n1(t)
n0

= 1+ψ(X1)
1+ψ(X0)

n1(t) .
(25)
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(25) Tells that evolution leads to the optimisation of ψ′′(X) := 1+ψ(X).
This example also shows how our unguided intuition may clash with our

formal characterisations. Mechanistically the bird density is regulated by the
nest sites, but structurally (i.e., in terms of the mathematical relations connect-
ing the various population dynamical variables) by the density of conspecifics
competing for those sites. One should watch out for this type of discrepancy
when applying proposition 3.2 to 3.4 in mechanistically formulated examples.

�

Example 3.3 We make the following changes in the previous example. Losers
of the lottery for nest sites aren’t removed, and winter survival is variable. In
that case

E(t) =
(
p(t),n(t)

)
, (26)

and

ρ(X, E) = L(p)+ L
(

1+ ψ(X) s
n

)
. (27)

The fact that
(
1+ψ(X) s

n(t)
)

increases in ψ, independent of n(t), implies that
L
(
1+ψ(X) sn

)
and therefore ρ(X, E) increases whenever ψ(X) increases. Since

ψ is an optimisation principle, our model allows a pessimisation principle φ,
by proposition 3.3. But it is clearly impossible to find any sort of explicit ex-
pression for φ(E). �

Example 3.4 Consider the population dynamical equations

ni(t + 1) = ai
(
f(E(t))

)bi ni(t) , i = 0, . . . , k , (28)

with
E(t) =

(
c0n0(t)+ · · · + cknk(t)

)
, (29)

all ai, bi and ci > 0, and f decreasing from 1 to 0 for E increasing from 0 to∞.
With the choice

f(E(t)) =
(
1+ E(t)

)−1 , (30)

and k = 0, this model becomes the model launched into fashion by i.a. Hassell
et al. (1976) as a touchstone for the appearance of chaotic fluctuations in single
species population dynamics.

The trait vector appearing in (28) is

X = (a, b, c) . (31)

The parameters a, 1/b and c can be interpreted in individual-based terms as
respectively the per capita reproduction in a boom environment, the ability to
cope with a bust environment, and the per capita impingement on the common
environment.

From (28) we find

ρ(X, E) = L
(
a(f(E))b

)
= ln(a)+ bφ(E) , (32)

with
φ(E) = L(f(E)) . (33)

From ρ(X, Eattr(X)) = 0 we deduce that

φ(Eattr(X)) = −b−1 ln(a) . (34)
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We conclude that evolution maximises

ψ(X) := ln(a)
b

. (35)

In accordance with propositions 3.3 and 3.4 we can define the functions a
and b occurring in the definitions of one-dimensional action, as

α(ψ(X), E) := ψ(X)+φ(E) =: β(X,φ(E)) . (36)

The point that we want to make is that the quantities α and β defined by (36)
have the same sign as ρ(X, E), but are not equal to ρ(X, E), as was the case
in the previous example. It can even be proved that for ρ given by (32) it is
impossible to find pairs α and ψ, or β and φ, for which such an equality holds
good. �

4 When does evolution maximise r or R0?

In this section we shall consider the optimisation principles of classical life his-
tory theory, to wit r - and R0-maximisation. Since r and R0 are only defined
for constant environments we shall from now on (i) assume that population dy-
namical equilibrium obtains, and (ii) have the symbol E refer alternatively to a
potential condition of the environment at a particular time, or to constant func-
tions of time having that condition of the environment as value. For constant
environments

ρ(X, E) = r(X, E) . (37)

Moreover,

r(X, E)
>
=
<

0 if, and only if, R0(X, E)
>
=
<

1 , (38)

allowing the replacement of ρ(X, E) in the recipes of sections 2 and 3 by ln(R0

(X, E)). (See e.g. Roughgarden, 1979; Charlesworth, 1994; Metz & Diekmann,
1986.)

Incidentally, although the usual definitions of r and R0 are predicated upon
all individuals being born equal, they can readily be extended to cater for vari-
able birth states and spatial heterogeneity. The only proviso is that E should be
constant in time. (See e.g. Diekmann et al., 1990; Jagers, 1991, 1995; Kawecki &
Stearns, 1993; Kozłowski, 1993; Diekmann & Metz, 1994.)

Below E0 denotes some specially chosen fixed value of E.
The following proposition is an immediate corollary of proposition 3.1.

Proposition 4.1 r(X, E0), or R0(X, E0), is an optimisation principle for, and only
for, combinations of life histories and ecological embedding, such that there exists
a function α increasing in its first argument such that

sign r(X, E) = signα
(
r(X, E0), E

)
, (39)

or
sign ln(R0(X, E)) = signα

(
ln(R0(X, E0))

)
(40)

respectively.
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Remark 4.1 The result from proposition 3.4 allows us to replace the charac-
terisations from proposition 4.1 by the characterisation that there should exist
a function φ of E to the real numbers such that

sign r(X, E) = sign
(
r(X, E0)+φ(E)

)
, (41)

or
sign ln(R0(X, E)) = sign

(
ln(R0(X, E0))+φ(E)

)
(42)

respectively. However, this characterisation may in theory be equivalent to the
characterisation from proposition 4.1, in practice it is less useful as φ rarely
pops up as an explicit formula, whereas it is usually fairly easy to spot the α
occurring in the characterisation from proposition 4.1. �

We shall say that evolution just maximises r , or R0, whenever r(X, E0), re-
spectively R0(X, E0), is an optimisation principle for every choice of E0.

Proposition 4.2 Evolution just maximises r , or R0, if and only if it deals with
combinations of life histories and ecological embedding such that is possible to
write

r(X, E) = α(r(X, E0), E) , (43)

or
R0(X, E) = exp

(
α(ln(R0(X, E0)), E)

)
(44)

respectively, with α increasing in its first argument, and E0 fixed, but otherwise
arbitrary.

A proof of this proposition can be found in Appendix A.

Example 4.1 Whenever the environment makes itself felt only through an ad-
ditional death rate µ(E), acting equally on all individuals, r(X, E) can be ex-
pressed as

r(X, E) = r(X, EV)− µ(E) , (45)

EV the virgin environment. Therefore evolution within those confines just max-
imises r . �

Example 4.2 The confinement of the X- and E-dependence to non-overlapping
life stages allows R0(X, E) to be expressed as

R0(X, E) = φ(E)R0(X, EV) , (46)

EV the virgin environment. Therefore evolution within those confines just max-
imises R0. �

5 The potential of the community dynamical feed-
back-loop for influencing life history predictions:
an example

Consider the following simple family of life histories: Juveniles die at a rate µJ

and mature into adults at age T . Adults die at a rate µA and reproduce at a rateb.
All these parameters may in principle be affected by E. Their values in the virgin
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environment EV we shall indicate with an (additional) index V. The strategy
parameter is the length of the juvenile period in the virgin environment, TV. The
adult reproduction rate b increases linearly with TV; in the virgin environment

b(TV, EV) = bV(TV) = max (0, TV − 1) . (47)

In addition we (i) brashly assume that population dynamical equilibrium
obtains, and (ii) have the symbol E refer alternatively to a constant (with as
value a condition the environment might be in at a particular time) or to a
constant function of time.

We combine this basic scenario with six alternative environmental feedback
rules:

1. E only equally additively affects the juvenile and adult mortality rates,

µJ(E) = µJV + γ1(E) , µA(E) = µAV + γ1(E) , (48)

(parameters for which nothing is specified are assumed always to take
the value for the virgin environment, in this case T(E) = TV, b(TV, E) =
bV(TV)),

2. E only additively affects the adult mortality rate,

µA(E) = µAV + γ2(E) , (49)

3. E only multiplicatively affects the reproduction rate,

b(TV, E) = bV(TV)
θ3(E)

, (50)

4. E only additively affects the age at maturation (without affecting the birth
rate) in such a manner that for a constant environment

T(E) = TV + γ4(E) , (51)

5. E only multiplicatively affects the age at maturation (without affecting the
birth rate), in such a manner that for a constant environment

T(E) = θ5(E)TV , (52)

6. E only additively affects the juvenile mortality rate,

µJ(E) = µJV + γ6(E) , (53)

with

γi(E) ≥ γi(EV) = 0 for i ∈ {1,2,4,6} , and (54)

θj(E) ≥ θj(EV) = 1 for i ∈ {3,5} . (55)

For fixed values of TV and E we can, directly from our initial model descrip-
tion, derive the characteristic equation,

b e−(r+µJ) T

r + µA
= 1 , (56)
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as well as an explicit expression for R0,

R0 = b e−µJT

µA
. (57)

Below we shall use a ∗ to mark the ESS value of any quantity.
Feedback rule 1 makes our model a special case of the models considered

in example 4.1. Therefore we can determine T∗V by maximising r(·, EV). In
Appendix B we describe a simple way to calculate the, unique, maximum.

Feedback rules 2 to 4 all lead to a formula for R0 which, although the bio-
logical mechanism differs from that of the models considered in example 4.2,
can be brought into the form (46), with

R0(TV, EV) = bV(TV) e−µJVTV

µAV
, (58)

and

rule 2 : φ(E) = µAV

µAV + γ2(E)
, (59)

rule 3 : φ(E) = 1
θ3(E)

, (60)

rule 4 : φ(E) = e−µJV γ4(E) . (61)

(In Appendix C we show that it is possible to slightly reinterpret the model
formulation such that cases 2 to 4 do become subsumed under example 4.2.)

Case 5 doesn’t belong to any of the special cases considered in examples
4.1 or 4.2. However, it is easily seen from the interpretation that θ5(E) mono-
tonically affects R0. Therefore we fall back on the general procedure for one-
dimensionally acting environments, with ln(R0) substituted for β, and 1/θ5

for φ, i.e., we set

R0(TV, Eattr) = bV(TV) e−µJV θ5(Eattr) TV

µAV
= 1 , (62)

in order to calculate the optimisation principle ψ(TV) := θ5(Eattr(TV)). It turns
out that we are lucky, and we end up with the explicit expression (after mul-
tiplying out the constant factor µJV)

ψ(TV) = ln(bV(TV))− ln(µAV)
TV

. (63)

The story for case 6 is exactly the same as for case 5, with −γ6 in the role
of φ, even to the extent that we end up with the same optimisation principle.

Remark 5.1 In principle case 1 can be analysed by exactly the same procedure
as cases 5 and 6, except that it isn’t possible to find an explicit expression for
γ1(Eattr(TV)). And our general results tell that anyway the resulting optimisa-
tion principle would be monotonically related to r(·, EV). �

After the mathematics comes the interpretation problem. In the classic life
history model this is less of a problem, as it is assumed that the life history
parameters of an individual are constants, instead of being potentially under
environmental control. In the case of the present model we shall distinguish
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Figure 1: Correlations between the adult mortality rate µA and the duration
of the evolutionarily stable juvenile period T∗, both “observed in the field”,
for the six models with alternative environmental feedback rules described in
section 5. The value of the “physiological parameter” juvenile mortality in the
virgin environment, µJV, was kept fixed at µJV = 0.25.

two situations, called “laboratory” and “field”. In the laboratory situation the
environment is kept constant, whereas in the field situation the environment
adjusts itself such that

R0(T∗V , E) = 1 . (64)

For the feedback rules 1 to 6 the values of the life history parameters in the
laboratory situation differ from those in the virgin environment by at most
either an additive or a multiplicative constant. The field values are obtained
by adjusting the virgin parameter values, where appropriate, by γi(E) or γj(E)
determined from (64).

Figure 1 shows the correlations obtaining between the field observables T∗

and µA, for a fixed value of µJV, for each of our six feedback rules.
The numbering of the panes refers to the feedback rules. The plotted field

observables are determined by a combination of the “physiological parameters”
µAV (the adult death rate in the virgin environment) and T∗V (the ESS value of TV,
the juvenile period in the virgin environment), and the corresponding feedback
rule. This amounts to plotting T∗V versus µAV + γ1(Eattr(T∗V )) (for model 1),
T∗V versus µAV + γ2(Eattr(T∗V )) (for model 2), T∗V versus µAV (for model 3),
T∗V + γ4(Eattr(T∗V )) versus µAV (for model 4), θ5(Eattr(T∗V )) T

∗
V versus µAV (for

model 5), and T∗V versus µAV (for model 6). For the computational details we
refer to section 5 and Appendix B.

The, for all curves identical, upper limit of µA results from the fact that
for higher values of µAV no strategy can invade into the virgin environment.
Such values of µAV would lead in a, naive, calculation to γi(Eattr(T∗V )) < 0 (in



Metz, Mylius & Diekmann When Does Evolution Optimise? 15

0 0.5 1 1.5

model 1

0

2

4

6

8

10

Field adult mortality µA
L

en
gt

h 
of

 th
e 

ju
ve

ni
le

 p
er

io
d

T
*

, a
s 

ob
se

rv
ed

 in
 th

e 
fi

el
d

Figure 2: Correlation between the adult mortality rate µA and the evolutionar-
ily stable duration of the juvenile period T∗, both “observed in the field”, for
feedback rule 1 from section 5. The difference with pane 1 of Figure 1 is that
now the value of the observed juvenile mortality µJ, instead of the physiological
parameter µJV, was kept fixed, at µJ = 0.5.

models 1, 2, 4, or 6) or θj(Eattr(T∗V )) < 1 (in models 3 or 5), i.e., values of γi
or θj which were excluded a priori in our model specification. In pane 1 the
lower limit of µA results from the additional mortality due to environmental
feedback. In pane 2 we see that a feedback through the adult mortality by
necessity exactly compensates for any difference in the adult mortality rate in
the virgin environment.

Apparently different feedback rules can lead to radically different patterns.
Pane 1 of Figure 1 differs from Figure 2 by whether we plot cases with matching
values of µJV (Figure 1) or matching values of µJ (Figure 2). The second picture
applies to a protocol in which we select species on the basis of their equality of
the observed value of µJ, the first picture to the more usual protocol where we
select them for their a priori expected similarity with respect to µJV. Although
conceptually different, the two protocols induce similar model predictions. In
cases 2 to 6 the predictions for the two protocols are even exactly the same.
In cases 2 to 5 this is due to the assumption that µJ = µJV, in case 6 to what
appears to be just an algebraic quirk (see Appendix B).

Remark 5.2 We refrained from including plots for all different possible para-
meter combinations: The plots of T∗V against µAV, with µJV fixed, are less spec-
tacular. The plots for cases 1, 3 and 6 look like the corresponding panes in
Figure 1, those for cases 2 and 4 like pane 3 of Figure 1, and the plot for case 5
is equal to that for case 6. The plots of T∗ against µJ, with µAV fixed, all show a
roughly hyperbolically decreasing relation, like in pane 4 of Figure 1. The plots
of T∗V against µJV, with µAV fixed, show either a decreasing relation, in cases 1
to 4, or a horizontal line in cases 5 and 6. �

6 Concluding remarks

The main relevance of our propositions is that they rigorously show that on
an abstract level the suite of simple examples 3.2 to 3.4 are representative
of all population dynamical scenarios allowing an evolutionary extremisation
principle. These scenarios can only differ in the, unfortunately often quite
horrible, technical details of the calculations.
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Our propositions also show that having an extremisation principle really is
a rather special property.

In the intuitively obvious case we can point to an intermediate scalar quant-
ity which when increased, increases fitness in all relevant environments. As it
turns out the environments that matter are those stationary environments that
can potentially be generated by the family of communities under consideration
as reactions to particular values of the trait vector. A technical elaboration
moreover shows that the initial requirement can be weakened by replacing the
word “fitness” by the phrase “some quantity that is sign-equivalent with fit-
ness”. This technical variant we have dubbed “one-dimensional action” of the
trait vector (or strategy parameters, if your leaning is ecological instead of taxo-
nomical).

The other, slightly less obvious, scenario, is that the environment acts one-
dimensionally (in the aforementioned technical sense). We have proved that
these two cases are effectively only one case, and, what is more, the only case al-
lowing an evolutionary extremisation principle. Proposition 3.4 tells moreover
that in that case the trait vector and the environment by necessity act not only
one-dimensionally but also, in a certain technical sense, independently.

It is our conviction that it is only our own, unwitting or deliberate, moulding
of evolutionary scenarios that leads to the frequent occurrence of extremisa-
tion principles in the life history models studied in the literature. For more
complicated feedback rules shortcuts in the form of an optimisation principle
don’t exist!

The next step should be to analyse scenarios where there is not one but two
essential scalar components of environmental action. The initial stages of such
an analysis can be found in Meszéna (1995).

The cases where evolution just maximises r or R0 are considerably rarer
still. First of all the community should generate only constant environments.
Secondly the dependencies of r or R0 on the trait vector in these different
environments should be monotonically related.

The example from section 5 furthermore shows how the details of the en-
vironmental feedback loop can have a non-trivial influence on the predicted
relationships between life-history parameters, even when we restrict ourselves
to scenarios where evolution just maximises R0 (cases 2 to 4).

In conclusion, the choice of a single optimisation criterion, be it R0 or r or
still something else, always entails, often fairly special, assumptions about the
nature of the environmental feedback loop. The current literature consistently
underemphasises this aspect.
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Appendices

A Theorems underlying the statements in sections 3
and 4

In the main text we presented our propositions in an order which seemed nat-
ural in view of their interpretation and/or application. The order in which these
results are naturally deducible is rather different. Therefore we make a fresh
start. The propositions of the main text should be seen primarily as but a
convenient summary of the results from the arguments below.

Convention Whenever we refer to r or R0 we implicitly restrict ourselves
to community dynamical scenarios for which Eattr(X) is time-constant for all
relevant X. Otherwise we only require E to be ergodic (and realisable as Eattr(X)
for some X). The virgin environment will be denoted as EV.

The following four theorems and corollaries are trivial. The crux are the
questions that follow them.

Theorem 1 If there exist functionsψ ofX, andα ofψ and E, to the real numbers,
with α increasing in ψ, such that

signα(ψ(X), E) = signρ(X, E)

then evolution maximises ψ(X) (or equivalently α(ψ(X), E) for any fixed E).

Theorem 2 (universal Verelendungs principle) If there exist functions φ of E,
and β of X and φ, to the real numbers, with β increasing in φ, such that

signβ(X,φ(E)) = signρ(X, E)

then evolution minimises φ(Eattr(X)).

Corollary 3 If we can write r(X, E) in the form

r(X, E) = α(ψ(X), E) ,

with α increasing inψ, then evolution maximises r(X, EV) (and, more generally,
r(X, E0) for any fixed E0).

Corollary 4 If we can write R0(X, E) in the form

R0(X, E) = exp
(
α(ψ(X), E)

)
,

withα increasing inψ, then evolution maximisesR0(X, EV) (and, more generally,
R0(X, E0) for any fixed E0).

Questions

1. Is there any relation between theorems 1 and 2?

2. Can theorems 1 and 2 be made into “if and only if” statements, e.g. by
requiring that the extremisation principle should hold independent of the
particular choice we may still make for a constraint on X?
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3. Is this also possible for the corollaries?

Theorem 5 (answer to question 1) The assumptions of both theorems 1 and 2
are equivalent to: There exist functions φ of E, and ψ of X to the real numbers,
such that

sign
(
ψ(X)+φ(E)

)
= signρ(X, E) . (65)

Proof : Theorem 1: Define the functionφ of E to the real numbers byα(−φ(E),
E) = 0. Then

sign
(
ψ(X)+φ(E)

)
= signα(ψ(X), E) = signρ(X, E).

Therefore the assumption of theorem 1 implies the assumption made above.
The converse implication is obvious.

Theorem 2: Let ψ(X) := −φ(Eattr(X)). As β(X,φ(Eattr(X))) = 0

sign
(
φ(E)+ψ(X)

)
= sign

(
φ(E)−φ(Eattr(X))

)
=

signβ(X,φ(E)) = signρ(X, E).

Therefore the assumption of theorem 2 implies the assumption made above.
The converse implication is obvious. �

Apparently we may without loss of essential information replace α(ψ,E)
by ψ +φ(E) respectively β(X,φ) by ψ(X)+φ, with φ respectively ψ defined
above.

Remark 1.1 The reasoning underlying theorem 5 does not extend to corollaries
3 and 4: From r(X, E) = α(ψ(X), E) we cannot even conclude that there exist
functions φ′ of E and ψ′ of X such that r(X, E) = ψ′(X)+φ′(E). Neither can
we conclude from R0(X, E) = exp(α(ψ(X), E)) that there exist functions φ′

of E and ψ′ of X such that R0(X, E) = exp(ψ′(X)+φ′(E)). �

The next theorem is again trivial. However, it forms a natural introduction to
the somewhat unexpected, though on second thought equally trivial, theorem 7.

Theorem 6 (first part of the answer to question 2)

(1) If we require that we can determine the ESS under any possible constraint
by maximising a function ψ of X then this function is uniquely determined
up to an increasing transformation.

(2) If we require that that we can determine the ESS under any possible con-
straint by minimising a function φ of E ∈ Eattr(X) then this function is
uniquely determined up to an increasing transformation.

Theorem 7 (second part of the answer to question 2)

(1) If there exists a function ψ of X to the real numbers such that we can de-
termine the ESS value of X by maximising ψ, independent of any choice
that we may still make for a constraint on X, then there exists a function
φ of E such that (65) applies.
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(2) If there exists a function φ of E to the real numbers such that we can de-
termine the ESS value of X by minimising φ(Eattr(X)), independent of any
choice that we may still make for a constraint on X, then there exists a
function ψ of X such that (65) applies.

(3) The functions φ respectively ψ are uniquely determined by their counter-
parts.

Proof : In case (1) we define φ by φ(Eattr(X)) := −ψ(X). In case (2) we define
ψ(X) := −φ(Eattr(X)). (65) is derived by considering all possible constraints
of the type X ∈ {X1, X2}. Maximising ψ(X) or minimising φ(Eattr(X)) will
only predict the right ESS for this constraint if sign

(
ψ(Xi)+φ(Eattr(Xj))

)
=

signρ(Xi, Eattr(Xj)) for all values of i and j. Uniqueness of φ respectively ψ
follows from the fact that sign

(
ψ(X)+φ(Eattr(X))

)
should be 0. �

Apparently any optimisation principle ψ automatically carries a pessimisa-
tion principle φ in its wake, and vice versa.

Corollary 8 (last part of the answer to question 2) We may replace the opening
“if”s of theorems 1 and 2 by “iff”s.

Corollary 9 (first part of the answer to question 3)

(1) If we can determine the ESS value of X by maximising r(X, E0) for some
special value E0 of E, independent of any choice that we may still make for
a constraint on X, then there exists a function φ of E such that

sign
(
r(X, E0)+φ(E)

)
= sign r(X, E) .

(2) If we can determine the ESS value of X by maximising R0(X, E0) for some
special value E0 of E, independent of any choice that we may still make for
a constraint on X, then there exists a function φ of E such that

sign
(

ln(R0(X, E0))+φ(E)
)
= sign ln(R0(X, E)) .

It is not possible to get any representation of r(X, E) or R0(X, E) under the,
weak, condition that there is at least one E0 such that evolution maximises
r(X, E0) respectively R0(X, E0). We need to make a stronger assumption about
the sense in which evolution maximises r respectively R0:

Theorem 10 (last part of the answer to question 3)

(1) If the maximisation principle from corollary 9 (1) holds good for all possible
choices of E0, then it is possible to write

r(X, E) = α(ψ(X), E) ,

with α increasing in its first argument and ψ(X) = r(X, E0) for some,
arbitrary but fixed, E0.

(2) If the maximisation principle from corollary 9 (2) holds good for all possible
choices of E0, then it is possible to write

R0(X, E) = exp
(
β(ψ(X), E)

)
,
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with β increasing in its first argument andψ(X) = ln(R0(X, E0)) for some,
arbitrary but fixed, E0.

Proof : The maximisation of, say, γ(X, E), E fixed, can only lead to the same
value of the maximum as the maximisation of γ(X, E0) for all possible con-
straints if γ(X, E0) and γ(X, E), considered as functions of X, are related by
an increasing function: γ(X, E) = f(γ(X, E0), E, γ), where the last argument
is at this stage only notional. For any given E (and γ) this function is neces-
sarily unique. In cases (1) and (2) we define α(ψ,E) := f(ψ,E, r) respectively
β(ψ,E) := ln(f (ψ,E,R0)). �

B Analysis of the example from section 5

Case 1 We consider the maximisation of r defined by

g(r , TV) = 1 , (66)

with

g(r , TV) = bV(TV) e(r+µJV) TV

r + µAV
. (67)

Implicit differentiation of (66) gives

∂r
∂TV

∂g
∂r

= − ∂g
∂TV

. (68)

From (68) we see immediately that g decreases in r . Therefore ∂g
∂r
< 0. It

is also easy to see (i) that ∂g
∂TV

< 0 for TV sufficiently large, and (ii) that the fact

that bV(1) = 0, and that bV increases in TV, imply that ∂g
∂TV

> 0 for TV = 1.

Therefore r has at least one maximum in (1,∞).
To calculate that maximum we set ∂r

∂TV
= 0 in (68). This tells us that at

TV = T∗V
∂g
∂TV

= 0 .

By differentiating (67) for TV we find that

∂g
∂TV

= ∂bV

∂TV

g
bV
− (r + µJV)g .

Substitution of the resulting relation

(r + µJV) = d ln(bV)
dTV

in (66) with (67) gives

bV(TV) exp
(
−d ln(bV)

dTV
TV

)
= d ln(bV)

dTV
+ (µAV − µJV) (69)

together with
d ln(bV)
dTV

> (µJV − µAV) .
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The next step is to substitute (47). This reduces (69) to

(TV − 1) exp
(
− TV

TV − 1

)
= 1
TV − 1

+ (µAV − µJV) . (70)

The introduction of

y := 1
T∗V − 1

(71)

lets us replace (70) by

e−(1+y)

y
−y = µAV − µJV . (72)

The left hand side of (72) decreases from ∞ at y = 0 to −∞ at y = ∞. We
conclude that r has a unique optimum T∗V which can easily be determined
from (72) with (71).

Formulas (71) and (72) moreover allow us immediately to plot the relation
between T∗V and µA at fixed µJV. The relation of T∗V with µA for fixed µJ, can be
plotted as a parametric curve, with y as a parameter. �

Cases 2 to 4 From ∂R0

∂TV
= 0 we find that

T∗V = 1+ 1
µJV

.

Apparently T∗V is independent of µAV. This is clearly brought out in pane 3 of
Figure 1, where the environmental feedback loop acts through the birth rate b.
The decreasing relation in pane 4 derives entirely from the effect of the envir-
onmental feedback loop on T∗ = T∗V +γ4(E). In pane 2 we see the effect of the
environmental feedback loop keeping µA constant, independent of µAV. �

Cases 5 and 6 Setting ∂ψ
∂TV

= 0 leads to

(TV − 1) exp
(
− TV

TV − 1

)
= µAV . (73)

When TV increases from 1 to∞ the left hand side of (73) increases from 0 to∞.
Therefore (73) has a unique solution.

In case 5 we plot the relation between T∗ = θ5(E)T∗V and µA as a parametric
curve with T∗V as parameter. Although in case 6 the feedback loop influences µJ,
it makes no difference whether we keep µJV or µJ constant, as by (73) T∗ is
independent of µJV. �

C Bringing cases 3 to 4 from the example in section 5
in line with example 4.2

We can, by slightly reinterpreting the model formulation, make each of the
cases 2 to 4 from the example from section 5 into a special case of example 4.2.
This is done by introducing a third stage which is either the only stage affected
by E, and isn’t affected by TV, or the only stage affected by TV, and isn’t affected
by E. We shall consider the cases in opposite order.
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Case 4: We split the juvenile period into a basic juvenile period of length TV,
and a subadult period of length γ4(E).

Case 3: We introduce an infinitesimally short nursery stage before the juvenile
stage. Adults reproduce according to bV(TV). Nursery survival is 1/θ3(E).

Case 2: We again apply the nursery stage trick, except that we now assume
that the adult reproduction rate and nursery survival are

bM := max
TV

(
bV(TV)

)
, and

bV(TV)
bM

respectively . (74)

(In case 3 we first consider models with a maximum adult lifespan, to let (74)
make sense, and then use a limit argument.)
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