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1 Introduction

Many basic principles in ecology and life-history theory are derived from the
maximization of ‘fitness’. The two measures of fitness, or optimization criteria,
that are most widely used for his purpose, are the population growth rate, r0,
and the basic reproduction number, R0. r0 Is also called the intrinsic rate of
natural increase, or the Malthusian parameter, and is defined as the exponen-
tial population growth rate on a continuous time basis. R0 is also known as the
expected life-time production of offspring, and is defined as the multiplicative
population growth rate on a discrete, generation basis. (See, e.g., Roughgarden
1979; Yodzis 1989; Diekmann et al. 1990.) Other possible fitness measures in-
clude reproductive valuev , minimum required resource level, carrying capacity,
and several others (see Caswell, 1989; Roff, 1992; Stearns, 1992; Charlesworth,
1994, and the references therein).
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However, results may differ, depending on which fitness measure is used.
For example, the prediction of reaction norms for age and size at maturity
depends on whether R0 (Stearns & Koella, 1986) or r0 (Kozłowski & Wiegert,
1987) is used as a fitness measure. The question which function is the Holy
Grail of fitness measures has led to much discussion (see Roff, 1992; Stearns,
1992; Charnov, 1993; Kozłowski, 1993, for an overview).

The problem boils down to the fact that the role of the environment is
missing in this discussion. Fitness necessarily depends both on the individual
trait value and on the environment perceived by the individual, whereas fitness
measures, used as optimization criteria, are functions of only one variable,
the trait. Evolutionarily stable strategies (ESS’s, or non-invasible strategies; see
Maynard Smith & Price, 1973; Maynard Smith, 1982; Eshel, 1996) can very well
be characterized by an optimization criterion, but this is restricted to the en-
vironment set by the resident phenotype. Only under very special conditions,
there exist stand-in fitness measures (not to be confused with fitness itself) that
are maximized by evolution, independent of the environment (Michod, 1979;
Mylius & Diekmann, 1995; Pásztor et al., 1996).

We start our argumentation with a general definition of fitness, derived
from invasion analysis. Then we survey the relationship between evolutionar-
ily stable strategies and optimization criteria. It turns out that the population
dynamical embedding, in particular density dependence, plays a crucial role in
shaping this relationship.

Our analysis leads to the derivation of necessary and sufficient conditions
for the special case that the eventual outcome of the evolutionary process is
characterizable by some optimization principle. In (still more) special cases,
such a principle happens to reduce to maximization of r0 or R0. We use these
results to analyse an example, showing that the details of the population dy-
namical embedding may influence evolutionary predictions to an unexpected
extent. Finally, we survey the relationship between optimization principles and
the shape of pairwise invasibility plots (PIPs).

2 Setting the stage

We characterize individuals by their type X, which can be a vector consisting
of several variables. X is a member of the set of all individual strategies X. De-
pending on whether one is interested in taxonomy, life-history theory, or (be-
havioural) ecology, one can imagine X as one or more trait values, life-history
variables, or behavioural strategies, specifying all relevant aspects in which
individuals may differ. Unless stated otherwise, we will assume that the popu-
lation is monomorphic : i.e., all individuals have the same trait value. The world
in which they live is fully characterized by an (also possibly multi-dimensional)
environment E. The only constraint we put on the environment is that it should
be ergodic. This is a technical condition which in practice amounts to the ab-
sence of long-lasting trends. We denote the set of all possible environments
by E.

Ecological embedding

We assume that there exists a population-dynamical feedback loop, such that
the population affects the environment and, in its turn, the environment in-
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fluences population dynamics. The exact nature of the population-dynamical
feedback loop depends on the ecology, but one can think of crowding or food
availability as possible mechanisms. Due to the feedback loop between a pop-
ulation of individuals of type X and the environment, the population density
as well as the environment converge to some attractor. We confine our con-
siderations to environments that can occur as an attractor for some X, which
we denote as Eattr(X). (Notice that we do not need to explicitly consider the
non-biotic and other components of the environment that are not dynamically
coupled to the trait under study.)

Often, it is useful to consider a special, fixed environment as reference en-
vironment. As a special case of a reference environment, one can imagine the
virgin environment, which corresponds to the situation where individual or-
ganisms experience no effect (yet) from the presence of other individuals. For
example, studying the evolution of parasitoid virulence in a host-parasitoid
model, the virgin environment for parasitoid individuals would encompass the
host population undepressed by parasitoid influence. We refer to the virgin
environment as EV.

In the following, we will use the phrase eco-evolutionary model to describe
combinations of life history, ecological embedding, and a trait under the force
of evolution.

Fitness

Our evolutionary argument is based upon the following fitness concept: Con-
sider a thought experiment, in which we let a clone of type X grow in a constant
environment E. We define fitness, denoted by ρ(X, E), as the hypothetical aver-
age rate of exponential growth of the clone

ρ(X, E) := lim
t→∞

ln[N(t)]
t

, (1)

where N(t) is the overall size of the clone at time t. (See Charlesworth 1980,
1994; Caswell 1989; Tuljapurkar 1989, 1990; Metz et al. 1992; Rand et al. 1994;
Ferrière & Gatto 1995; Metz et al. 1996a.) Notice that this definition, and we
emphasize this by writing ρ(X, E) as a function of two variables, expresses that
fitness necessarily depends both on the type X of the clone and the environ-
ment E in which it supposedly lives (see also Michod, 1979; Pásztor, 1988; Metz
et al., 1992; Diekmann & Metz, 1994; Mylius & Diekmann, 1995; Geritz et al.,
1997).

As a special case, we have

in constant environments ρ(X, E) = r(X, E) , (2)

where r is the exponential growth rate (see, e.g., Roughgarden, 1979; Yodzis,
1989). For later reference we note that on a population dynamical attractor
corresponding to trait value (or strategy parameter) X, necessarily

ρ(X, Eattr(X)) = 0 (3)

because on average no growth occurs; in constant environments, the population
is in steady state.
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Note that ρ(X, E) [from (1)] is the fundamental concept of fitness. The per-
formance of any optimization criterion, i.e. a function of X, purportedly max-
imized by evolution, has to be judged relative to its capability to predict the
evolutionary endpoints calculated from a complete invasibility analysis, based
on ρ.

Evolutionary invasibility and attainability

The trait values X̂, brought forth by evolution, should be non-invasible as well
as attainable. The first adjective expresses that X̂ is an evolutionary trap in the
sense that if X̂ is adopted by the whole population, any invasion by individuals
with a different strategy will fail. This is equivalent to the definition of an Evolu-
tionarily Stable Strategy (ESS; see Maynard Smith & Price, 1973; Maynard Smith,
1982). An ESS corresponds to an equilibrium point (or singular point) of the
adaptive dynamics, but despite the tempting “Stable” in its name it is not neces-
sarily an attractor of the adaptive dynamics. The second adjective, ‘attainable’,
is to ascertain that X̂ is an attractor; that is, there should exist evolutionary
pathways leading to the ESS. These pathways one can imagine as all feasible
sequences of strategies, with each strategy invasible by its successor, and the
non-invasible X̂ as the final, absorbing one.

In the special case of a one-dimensional trait space, the attainability condi-
tion is to require that, in a population of individuals with trait value x′ which
is slightly different from x̂, local mutants on the x̂ side be more fit and local
mutants on the non-x̂ side be less fit than x̂-individuals.

The problem of attraction or attainability as an incompleteness in the defin-
ition of an ESS, and the resulting need for further classification was recognized
early (e.g. Eshel & Motro, 1981; Eshel, 1983; Taylor, 1989), but has never really
pervaded the evolutionary biological literature. (See also Lessard 1990; Eshel
1996; Metz et al. 1996b; Geritz et al. 1997, 1998; Geritz & Kisdi to appear.)

Depending on the context, we will use the names non-invasible strategy
(which is the name we prefer because it is an exact description of the concept)
as well as ‘ESS’ (for historical reasons) and ‘evolutionarily stable life history’
(when we are dealing with life-history problems), and indicate non-invasible
trait values by an asterisk (∗). Non-invasible strategies or trait values that are
also attainable we will generally refer to as evolutionary stops, in the spirit of
the “streetcar theory of evolution” metaphor put forward by Hammerstein &
Selten (1994) and Hammerstein (1996). We will indicate variables correspond-
ing to an evolutionary stop by a hat (ˆ). Notice that for the historical reasons
mentioned above, we have to refrain from using the adjective ‘stable’ for the
last category because this has been used already for what we call non-invasible
strategies (ESS’s). This is especially unfortunate from a mathematical point of
view because in dynamical systems theory, a singular point which combines
non-invasibility and attainability would be called a ‘stable equilibrium’.

Notice that we unscrupulously sweep all genetic constraints under the car-
pet, which is only partially defendable (see, e.g., Liberman, 1988; Hammerstein &
Selten, 1994; Hammerstein, 1996; Weissing, 1996; Matessi & Di Pasquale, 1996).

We define the evolutionary stops by the following algorithm:

I. Determine for each trait value X the environment which it generates as a
resident, Eattr(X);
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II. Maximize, for each possible environment, the fitness ρ(X, E) over all trait
values X, resulting in a function Xopt(E);

III. The set of non-invasible strategies is now given by all X for which the
following equation holds:

Xopt(Eattr(X)) = X ; (4)

IV. To ascertain attainability, verify that the set of trait values X0 from which
X̂ is approximated with positive probability through a sequence X0, X1,
. . . , X̂, such that ρ(Xi+1, Eattr(Xi)) > 0, is sufficiently large.

This may not be the most practical way to find evolutionary stops. Especially
step IV (where genetic constraints make themselves felt) is troublesome and
therefore often ignored. However, this way of defining them will prove to be
useful in the next sections.

3 Optimization principles

A posteriori optimization criteria

Consider any eco-evolutionary model. If X∗ is an ESS, it follows directly from
the definition of non-invasibility that

ρ(X, Eattr(X∗)) < 0 for all X ≠ X∗ (5)

or, in words, all trait values different from the ESS value have negative fitness
in the environment that is set by the ESS value. Because ρ(X∗, Eattr(X∗)) = 0
this means that the function X 7→ ρ(X, Eattr(X∗)) has a maximum at X∗. [We
use the notation ‘x 7→ f(x,y)’ to indicate that we temporarily consider f as a
function of one variable, x, and keep y fixed.] Hence, we can conclude that if
X∗ is a non-invasible strategy, then the function

X 7→ ρ(X, Eattr(X∗)) (6)

is an optimization criterion.

It is very important to realize that (5) does generally not hold for other values
of the environment than Eattr(X∗). Only in an environment characterized by a
population dynamical attractor that is set by an evolutionarily stable resident,
it is necessarily the case that fitness is zero for the resident clone and less
than zero for all others. This restriction makes the optimization criterion (6)
only useful with the hindsight that X∗ is indeed an ESS. Hence, we call (5) an
a posteriori optimization criterion. If we do not know the ESS value X∗ then
we cannot determine the proper environmental condition Eattr(X∗). On the
other hand, as soon as we know the ESS, and the corresponding environmental
condition, we can construct arbitrary optimization criteria: any function of the
strategy set X to the real numbers R which has a maximum at X∗ will do the
job.
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Fitness measures

From the discussion about a posteriori optimization criteria, we may conclude
that we should concentrate on optimization criteria that are independent of
that part of the environmental condition that corresponds to the population
dynamical attractor produced by the resident population. That is, we want to
address the question:

Can we find a function of the trait, which allows us to determine which trait
value has the highest fitness, independent of the choice of the environment?

We define a fitness measure as a function ξ of the strategy set X to the real
numbers R, which allows us to determine which trait value has higher fitness,
independent of the choice of the environment, in the sense that ξ(X1) > ξ(X2)
implies ρ(X1, E0) > ρ(X2, E0) for all E0 ∈ E.

If there is a unique trait value (say X̂) maximizing ξ, independent of E, then
it will surely outperform all others when it is a resident (i.e., in the environment
set by itself), and hence it will be an ESS. In addition, if another trait value X′

that is not too different from X̂ is adopted by the population (and provided
the fitness function satisfies some continuity properties; see, e.g., Taylor 1989;
Geritz et al. 1997) then clones with trait values closer to X̂ will be able to invade
whereas clones with trait values more different from X̂ than X′ will die out after
an invasion attempt. So at least locally X̂ is also an attractor of the adaptive
dynamics. More precisely: ξ acts as a Lyapunov function for any adaptive
dynamics on the trait space. (A Lyapunov function, for a dynamical system on
a state space X, is a function L : X → R, which can be interpreted as a contour
map of the state space. The evolution of the system can then be described
as a steady uphill movement, and the final state of the system can be found
by maximizing L.) Those adaptive dynamics can still differ with respect to
the production of mutants. If the probability that a mutant ends up in a set
{X ∈ X | |ξ(X)−ξ(X̂)| < ε } is positive for all ε and all parents X close enough
to X̂, then X̂ is an attractor of the adaptive dynamics. If this probability is
positive for all parents X then X̂ attracts globally.

If we know the ecological conditions for the existence of fitness measures,
and we have an algorithm to find them, we can circumvent the complicated
procedure I–IV and calculate ESS’s by simply maximizing appropriate fitness
measures, at least in all cases where those conditions are fulfilled.

We feel that the above definition of a fitness measure is the explication of
the intuitive meaning people give to that term. However, as it turns out this
definition is stronger than needed: What really matters is (i) whether we are
able to calculate the ESS by optimizing some function ξ, and, preferably but not
necessarily, (ii) whether ξ also is a Lyapunov function of the adaptive dynamics
for the eco-evolutionary models under consideration.

A priori optimization- and pessimization principles

An optimization principle for an eco-evolutionary model is a function ξ : X →
R with the property that the ESS can be calculated by maximizing ξ(X), for
all possible constraints on X. And a pessimization principle or Verelendungs
principle we define analogously as: a function η : E→ R with the property that
the ESS can be calculated by minimizing η(Eattr(X)), for all possible constraints
on X.
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The rationale behind those definitions derives from the following observa-
tion: In the literature, putative optimization (or pessimization) principles are
generally introduced before the trait space, or, more frequently, before the con-
straints on that space are introduced. Such a procedure only makes sense under
the implicit assumption that the principle under consideration is independent
of the particular choice of trait space and constraints. (The rules of logic tell
us that a general statement about some proposition with a free variable in it,
in this case the unspecified domain of the function ξ, should always be inter-
preted as if it were preceded by the universal quantor: ‘for all possible values
of that variable’.)

Being an optimization principle is a weaker property than being a fitness
measure. A fitness measure allows the comparison of two trait values for any
possible environment, whereas an optimization principle only allows the com-
parison of two trait values on their corresponding environments. To see this,
just constrain the trait space to two values: {X1, X2}. In that case, ξ(X1) >
ξ(X2)means thatX1 is the ESS, which is the case if and only if ρ(X2, Eattr(X1)) <
0, and X2 is not an ESS, which is the case if and only if ρ(X1, Eattr(X2)) > 0.

The last statement also tells us that, biologically, an optimization principle
is a one-dimensional measure which tells for any pair of trait values who will
win in an invasion contest. Therefore, if an optimization principle exists, it also
acts as a Lyapunov function for any adaptive dynamics on the eco-evolutionary
model.

[Only one optimization principle known to us from the literature does not
satisfy the above comparison property. This exception is the MacArthur prod-
uct rule from sex-ratio theory: ξ(X) = f(X)m(X), with f and m the basic
female and male fitnesses (see Charnov, 1982). This principle only allows cal-
culating the ESS for constraints corresponding to convex sets in the (f ,m)-
plane. MacArthur’s ξ is not a Lyapunov function either: X1 and X2 may be
mutually invasible, even when ξ(X2) > ξ(X1). This happens if, on the straight
line connecting (f (X1),m(X1)) and (f (X2),m(X2)) in the (f ,m)-plane, there
are values of fm larger than ξ(X2).]

A pessimization principle η can be interpreted as an ecological measure of
the quality of the environment as perceived by the individuals: If η(Eattr(X1)) >
η(Eattr(X2)) then ρ(X2, Eattr(X1)) > 0, while by definition ρ(X2, Eattr(X2)) = 0.
That is, X2 perceives Eattr(X1) as better than Eattr(X2). The same holds for X1,
since ρ(X1, Eattr(X1)) = 0, while the η-inequality tells that ρ(X1, Eattr(X2)) < 0.

Remains to find necessary and sufficient conditions telling when an eco-evo-
lutionary model will allow an optimization- or a pessimization principle.

One-dimensional action

The crucial condition for the existence of fitness measures as well as optimiz-
ation- and pessimization principles is that the trait or the environment works
in a so-called one-dimensional manner. Before defining this precisely, we shall
give a simple example.

Box 1 Example 0

Assume that the environment is really one-dimensional and can
be represented as a linearly ordered set, like (a subset of) the real
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numbers R, and the ecological dynamics converges to a point equi-
librium. Additionally, suppose that fitness ρ(X, E) is monotonic,
say increasing, in its second argument. Imagine, as a biological ex-
ample, that we are interested in predator evolution, and the environ-
mental variable is prey density. In this case, Eattr is completely spe-
cified by the equation ρ(X, Eattr(X)) = 0 because the monotonicity
of E 7→ ρ(X, E) guarantees that this equation has only one solution.

Now it is easy to see that X∗ is an ESS if, and only if, Eattr(X) has
its minimum at X∗. First consider the case that Eattr(X) is minimal
at X∗. Then we have by definition

Eattr(X∗) < Eattr(X) for all X ≠ X∗ (7)

and consequently, because ρ(X, E) is supposed to be increasing in
its second argument,

ρ(X, Eattr(X∗)) < ρ(X, Eattr(X)) = 0 for all X ≠ X∗ . (8)

Hence in this case X∗ is an ESS. On the other hand, if Eattr(X) is not
minimal at X∗ then there is some X′ such that Eattr(X∗) > Eattr(X′)
from which we conclude that

ρ(X′, Eattr(X∗)) > ρ(X′, Eattr(X′)) = 0 . (9)

Hence X∗ is invasible by X′ and we conclude that in this case X∗ is
not an ESS.

If E 7→ ρ(X, E) is not increasing but decreasing then exactly the
same argument applies, but with ‘minimum’ replaced by ‘maximum’
and the corresponding inequalities reversed.

The conclusion we may draw from example 1 is that if Eattr(X) can be para-
meterized one-dimensionally and fitness is monotonic in that parameter then
that parameter is a pessimization principle.

When the environment is multi-dimensional there is no such thing as mono-
tonicity of fitness in its environmental argument, because monotonicity of a
function is only defined in relation to a one-dimensional argument. However,
when the effect of the environment (or the trait) on fitness is such that we
can map E (or X) onto some one-dimensional set, and if fitness is increasing
or decreasing on this set, we can still with some right say that the environ-
ment (or the trait) acts in a one-dimensional way. With this picture in mind,
we now generalize the one-dimensional action from the previous example to
multi-dimensional environments and trait vectors.

We say that a trait acts strictly one-dimensionally whenever there exists a
function ξ : X → R as well as a function X : R × E → R which increases in its
first argument, such that

ρ(X, E) = X(ξ(X), E) . (10)

Analogously, we say that the environment acts strictly one-dimensionally when-
ever there exists a function η : E → R and a function E : X × R → R which
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increases in its second argument, such that

ρ(X, E) = E(X,η(E)) . (11)

However, if we are just hunting for optimization- or pessimization prin-
ciples, then we can be less strict: Because the invasion success of a rare mutant
is determined solely by the question whether the mutant fitness is positive or
negative, it is sufficient to find mappings ξ or η that preserve the sign of ρ(X, E).

We say that the trait acts one-dimensionally (this is just an abbreviation; the
more precise expression would be ‘qualitatively or weakly one-dimensionally’)
whenever there exists a function ξ : X → R as well as a function X : R×E→ R
which increases in its first argument, such that

sign
[
ρ(X, E)

]
= sign

[
X(ξ(X), E)

]
. (12)

Analogously, we say that the environment acts one-dimensionally whenever
there exists a function η : E → R and a function E : X × R → R which in-
creases in its second argument, such that

sign
[
ρ(X, E)

]
= sign

[
E(X,η(E))

]
. (13)

Because the definitions of one-dimensional action may sound rather ab-
stract, we first represent the maps in a diagram and then illustrate them with
two examples.

R× E R

X× E R {−,0,+}

X×R R

p p p p p p p p p-X p p p p p p p p p p pR

sign

pppppp
pppppp6if the trait acts one-dimensionally: (ξ,I)

pppppppppppp?if the environment acts one-dimensionally: (I,η)

-ρ -sign

p p p p p p p p p-E p p p p p p
p p p p p�

sign

(14)

where I is the identity map.

Box 2 Example 1

Imagine an eco-evolutionary model in which population dynam-
ics converges to a steady state. Then the expected life-time produc-
tion of offspring, R(X, E), is defined (see, e.g., Roughgarden, 1979;
Yodzis, 1989; Diekmann et al., 1990).

Suppose that environmental deterioration reduces life-time re-
productive success by an E-dependent multiplication factor θ. (See
also example 5.) Then we can write

R(X, E) = RV(X) · θ(E) , (15)

where RV(X) := R(X, EV) is the life-time reproductive success of
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type X in the virgin environment and θ(E) is a measure of the envir-
onmental quality with 0 ≤ θ(E) ≤ θ(EV) = 1.

Because

ρ
>
=
<

0 if, and only if, R
>
=
<

1 (16)

(see also section 4 below), ρ and ln[R] have equal sign structures. If
we now choose

X 7→ RV(X) for ξ : X → R
(ξ, E) 7→ ln [ξ·θ(E)] for X : R× E→ R (17)

we see that (12) is satisfied: the trait acts one-dimensionally.
Analogously, if we choose

E 7→ θ(E) for η : E→ R
(X,η) 7→ ln [RV(X)·η] for E : X×R → R (18)

we see that (13) is satisfied: the environment acts one-dimensionally.

Box 3 Example 2

In this example, we allow the environment to be fluctuating, for
example due to a periodic or stochastic external driver. Imagine
an eco-evolutionary model with an ecological embedding, such that
density dependence makes itself felt by means of an E-dependent,
but otherwise constant, additional term δ to the individual death
rate. Then we can write

ρ(X, E) = ρV(X)− δ(E(t)) , (19)

where ρV(X) := ρ(X, EV) is the long-term average growth rate of
type X in the virgin (i.e., the best possible) environment. δ(E(t)) Is
the average of δ(E(t)) over time, which can be interpreted as a meas-
ure of the environmental deterioration at time t, with 0 = δ(EV(t)) ≤
δ(E(t)). (In a constant environment, one can take ρ(X, E) = r(X, E)
and δ(E(t)) = δ(Eattr).)

If we now choose

X 7→ ρV(X) for ξ : X → R
(ξ, E) 7→ ξ − δ(E(t)) for X : R× E→ R (20)

we see [by (12)] that the trait acts one-dimensionally.
Moreover, if we choose

E(t) 7→ δ(E(t)) for η : E→ R
(X,η) 7→ ρV(X)− η for E : X×R → R (21)

we see [by (13)] that the environment acts one-dimensionally.
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One can think of the ‘one-dimensional action’ property as the weakest link of
a chain: If the environmental feedback loop extends over several components,
then the component with the lowest dimensionality sets the property for the
total loop. The problem, however, is that E generally is a (measure on a set of)
function(s) of time. This often makes the chain difficult to fathom.

Mylius & Diekmann (1995) have described some special ecological scenarios
in which finding the ESS is equivalent to solving an optimization problem. Metz
et al. (1996b) have generalized and proved these special cases by providing
necessary and sufficient conditions for evolution to be optimizing. We will
sketch their results in the next sections.

Results

A familiar, special case of an optimization principle is: “Being more ‘efficient’
increases fitness in any relevant environment”. Most importantly, a particular
change in (a particular trait value that affects) efficiency should always either
increase or decrease fitness: the crucial restriction in the argument, “in any
relevant environment”, is rarely mentioned explicitly. As a generalization of
this special case we state the following results:

Result 1 (Fitness measure) Eco-evolutionary models have a fitness measure if,
and only if, the trait acts strictly one-dimensionally.

The ‘if’ direction is trivially true. To prove the ‘only if’ we start by assuming
that there exists a fitness measure ξ. First we observe that ρ(X2, E) = ρ(X1, E)
for all E whenever ξ(X2) = ξ(X1). Therefore we can just define X(ξ, E) =
ρ(X1, E).

Optimization principles are a natural generalization of fitness measures.
The corresponding characterization is given by:

Result 2 (Optimization principle) Eco-evolutionary models have an optimiza-
tion principle if, and only if, the trait acts one-dimensionally.

Examples of pessimization principles are also common. If the ecological em-
bedding is such that there is a single limiting resource (which is a clear example
of a one-dimensionally acting environment) an obvious example is: “Evolution
minimizes the availability of a limiting resource”. Another possibility is that in-
dividual life-history parameters are negatively affected by the total population
density. The interpretation is then: “Evolution maximizes population density”.
Generalizing from these examples we arrive at the next result:

Result 3 (Pessimization principle) Eco-evolutionary models have a pessimiza-
tion principle if, and only if, the environment acts one-dimensionally.

Finally, notice that through the assignment

ξ(X) = −η(Eattr(X)) (22)

we can create an optimization principle out of a pessimization principle and
vice versa (see also examples 2 and 3). So the two never come alone. The proofs
of results 2 and 3 are analogous to (but considerably more complicated than)
the proof of result 1. They can be found in Metz et al. (1996b).
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4 The special case of maximization of r0 or R0

The two fitness measures that are used most often are the population growth
rate r0 and the expected life-time production of offspring R0. (See Roff 1992;
Stearns 1992; Charnov 1993; Kozłowski 1993, and Pásztor et al. 1996 for an
overview.) r0 Is also called the intrinsic rate of natural increase, and is defined
as the exponential growth rate of a clone on a continuous time basis (see, e.g.,
Roughgarden, 1979; Yodzis, 1989). R0 is also known as the basic reproduction
number, and is defined as the multiplicative growth rate of a clone on a discrete,
generation basis (Roughgarden, 1979; Yodzis, 1989; Diekmann et al., 1990).

Because r0 and R0 are only defined for constant environments, we shall sup-
pose in this section that the population dynamical feedback is such that Eattr is
constant in time. [Notice that r0 is usually called r . We try to be consistent
in our notation, by writing r (and equally R) when the growth rate (life-time
offspring production) is a function of two variables, X and E, and writing r0

(and R0) when E has a fixed value, to be called E0.]
For a population in an ecological point equilibrium, we have both r = 0

and R = 1. That R is 1 can easily be verified from the observation that the
population number stays constant from generation to generation, so on average
each individual produces one offspring. Moreover,

r
>
=
<

0 if, and only if, R
>
=
<

1 . (23)

This allows, with preservation of sign structure, the replacement of ρ(X, E) in
the definitions of one-dimensional action (12) and (13) by r(X, E) as well as
ln[R(X, E)] (see also Roughgarden 1979; Charlesworth 1994; Diekmann & Metz
1994, and examples 2 and 3).

The understanding that we gained from section 3 guides us to rephrase the
question “When does evolution optimize r0 or R0?” in:

When is X 7→ r(X, E) or X 7→ R(X, E) maximal at X̂ for all E?

Using (2) and (12) we see, as a direct application of result 2, that r0(X) [=
r(X, E0)] is an optimization principle for fixed E0 ∈ E, provided that the eco-
evolutionary model allows the existence of a function Xr : R × E → R which
increases in its first argument, such that

sign
[
r(X, E)

]
= sign

[
Er (r0(X), E)

]
. (24)

Analogously, with the help of (2), (12) and (23) we see that R0(X) [= R(X, E0)]
is an optimization principle for fixed E0 provided that there exists a function
XR : R× E→ R which increases in its first argument, such that

sign
[

ln [R(X, E)]
]
= sign

[
XR(ln [R0(X)] , E)

]
. (25)

We shall say that evolution just maximizes r0, or R0, whenever r(X, E0), or
R(X, E0), is an optimization principle for every choice of E0 ∈ E. In this defini-
tion, the clause ‘just maximizes’ reflects the lack of any constraint on the envir-
onment E. This is analogous to the condition ‘for all possible constraints on X’
in the definition of an optimization principle.

As a direct corollary of result 2 we obtain the following result:



Mylius & Metz When Does Evolution Optimize? 13

Result 4 (Maximization of r0 or R0) Evolution just maximizes r0, or R0, if and
only if the eco-evolutionary model makes it possible to write

r(X, E) = X
(
r(X, E0), E

)
(26)

or
ln [R(X, E)] = X

(
ln [R(X, E0)] , E

)
(27)

respectively, for some function X : R × E → R which increases in its first argu-
ment, and arbitrary but fixed E0 ∈ E.

Box 4 Example 3

Suppose that density dependence makes itself felt only by an ad-
ditional death rate µ(E), acting equally for all individuals. Then we
can write

r(X, E) = r(X, EV)− µ(E) , (28)

where EV is the virgin environment. Therefore evolution within those
confines just maximizes r0 (see also Mylius & Diekmann, 1995).

In example 2 we saw, for steady-state population dynamics, one-dimensional
action of trait and environment when life-time reproductive success was re-
duced by an E-dependent multiplication factor θ. A biologically meaningful
scenario in which this might occur is when θ is the probability of dying, due to
density dependence, in a life stage before the trait starts acting. This leads us
to the following example:

Box 5 Example 4

Suppose that the life history and ecological embedding are such
that the model has non-overlapping life stages. Then we can write

R(X, E) = R(X, EV) · θ(E) (29)

and consequently ln[R(X, E)] = ln[R(X, EV)] + ln[θ(E)]. There-
fore, in these eco-evolutionary model families evolution just maxim-
izes R0 (see also Mylius & Diekmann, 1995).

5 Case study: different ecological embeddings

In this section, we will explore the consequences of different scenarios for the
population dynamical feedback, for the evolution of the age at maturity of a
hypothetical example organism. Note that we assume that all feedback loops
are one-dimensional. For an example with a higher-dimensional feedback loop,
we refer to Heino et al. (1997).
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Model description

First of all, we simplify by assuming that the virgin environment is constant in
time and that population dynamics converges to a unique equilibrium.

We consider the following simple life history: Juveniles mature into adults
at age T , after which they produce offspring at a constant rate b. Juveniles
and adults die at rates µJ and µA, respectively. All these parameters may be
affected by the environment E, as a consequence of the population-dynamical
feedback loop. We shall indicate their values in the virgin environment EV with
an index V. The evolutionary strategy parameter of our organism is the length
of its juvenile period in the virgin environment, TV. Postponing maturation
leads to an increased adult reproduction rate. Specifically, we suppose that b
increases linearly with TV in the virgin environment

bV(TV) := b(TV, EV) := max(0, TV − 1) . (30)

To this basic model, we add six alternative scenarios for the environmental
feedback loop:

I. E only affects the juvenile as well as the adult mortality rate by an equal
additional term for both:

µJ(E) = µJV +φ(E) and µA(E) = µAV +φ(E) (31)

II. E only affects the juvenile mortality rate additively:

µJ(E) = µJV +φ(E) (32)

III. E only affects the adult mortality rate additively:

µA(E) = µAV +φ(E) (33)

IV. E only affects the reproduction rate by a multiplicative factor:

b(TV, E) = bV(TV) ·ψ(E) (34)

V. E only affects the age at maturation additively, without affecting the birth
rate:

T(E) = TV +φ(E) (35)

VI. E only affects the age at maturation multiplicatively, without affecting the
birth rate:

T(E) = TV

ψ(E)
(36)

In all these cases

φ(E) ≥ φ(EV) = 0 and 0 < ψ(E) ≤ ψ(EV) = 1 . (37)

For each scenario, we assume that parameters for which nothing is specified
always take the value for the virgin environment. That is, for scenario I we
have T(E) = TV and b(TV, E) = bV(TV), for scenario II we have µA(E) = µAV,
T(E) = TV and b(TV, E) = bV(TV), etcetera.
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For fixed values of TV and E we can, directly from the basic model descrip-
tion, calculate the probability of surviving the juvenile period as e−µJ(E)T(E). The
expected total offspring production during the adult life span, conditional on
survival until adulthood, is b/µA(E). Multiplying these two expressions gives
us an explicit formula for R:

R(T , E) = b(T , E)
µA(E)

e−µJ(E)T(E) . (38)

In the following we will use a shorthand notation, by writing R as a function
of TV and either φ or ψ, where we use φ and ψ as parameterizations of the
environment.

The clonal growth rate r is the unique real root of the characteristic equation

b(T , E) e−[r(T ,E)+µJ(E)] T(E)

r(T , E)+ µA(E)
= 1 (39)

(see, e.g., Roughgarden, 1979; Yodzis, 1989).

Optimization principles for the different feedback scenarios

Feedback scenario I (i.e., density dependence uniformly tunes the mortality rate)
makes our model a special case of the model family considered in example 4. In
this case, evolution just maximizes the clonal growth rate r and consequently
we can determine the evolutionary stop T̂V by maximizing TV 7→ r(TV, E) for
E = EV, or any other fixed E.

The case of scenario II (density dependence tunes the juvenile mortality
rate) is different from examples 4 and 5. However, it is easily seen from the
interpretation [and (38)] that in this case R is a decreasing function of the envir-
onmentally induced mortalityφ(E). Therefore, we can still use result 2 for one-
dimensionally acting environments. After a little manipulation of the equations
(see Box 6) it turns out that we can use−φ for the pessimization principle η and
ln[R(TV,−φ)]/TV for E. Subsequently, we can use (22) to calculate the optim-
ization principle from the pessimization principle: ξ(TV) = −η(Eattr(TV)) =
φ(Eattr(TV)). So we end up with an optimization principle ln[R(TV, EV)]/TV

which (after leaving out the constant terms) simplifies to:

ξ(TV) = ln [bV(TV)]
TV

. (40)

Feedback scenarios III to V all lead to a formula for R(T , E) which, although
the biological mechanism differs from that of the models considered in ex-
ample 5, can be brought into the form (29):

R(TV, E) = R(TV, EV) · θ(E) , (41)

with

R(TV, EV) = bV(TV)
µAV

e−µJVTV (42)
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and (see Box 6 for the derivations)

θ(E) =


µAV

µAV +φ(E)
(scenario III)

ψ(E) (scenario IV)

e−µJVφ(E) (scenario V) .

(43)

The case of scenario VI is analogous to that of scenario II (also see Box 6).
Substituting ψ for η and ln[R(TV,ψ)]/TV for E, we even end up with the same
optimization principle (40).

Box 6 The equations behind the case study

Scenario II In this case, we can rewrite (38) as

R(TV, E) = bV(TV)
µAV

e−[µJV+φ(E)]TV = R(TV, EV) e−φ(E)TV . (44)

By substituting E = Eattr(TV) in this equation and using the steady-
state condition R(TV, Eattr(TV)) = 1, we see that

R(TV, EV) = eφ(Eattr(TV)) TV (45)

which yields, by solving for φ:

φ(Eattr(TV)) = ln [R(TV, EV)]
TV

= 1
TV

ln

(
bV(TV)
µAV

e−µJV TV

)

= 1
TV

ln

(
bV(TV)
µAV

)
− µJV . (46)

�

Scenarios III, IV and V In these cases, we can rewrite (38) as

R(TV, E) =



bV(TV)
µAV +φ(E)

e−µJV TV (scenario III)

bV(TV)ψ(E)
µAV

e−µJV TV (scenario IV)

bV(TV)
µAV

e−µJV (TV+φ(E)) (scenario V) ,

(47)

which yields

R(TV, E) = R(TV, EV) ·


µAV

µAV +φ(E)
(III)

ψ(E) (IV)

e−µJVφ(E) (V) .

(48)

�
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Scenario VI In this case, we can rewrite (38) as

R(TV, E) = bV(TV)
µAV

e−[µJV+φ(E)]TV = R(TV, EV) e−φ(E)TV . (49)

By substituting E = Eattr(TV) in this equation and using the steady-
state condition R(TV, Eattr(TV)) = 1, we see that

R(TV, EV) = eφ(Eattr(TV)) TV (50)

which yields, by solving for φ:

φ(Eattr(TV)) = ln [R(TV, EV)]
TV

= 1
TV

ln

(
bV(TV)
µAV

e−µJV TV

)

= 1
TV

ln

(
bV(TV)
µAV

)
− µJV . (51)

�

In principle, scenario I can be analysed by exactly the same pro-
cedure as scenarios II and VI, except that it is not possible to find an
explicit expression forφ(Eattr(TV)). And our general results tell that
anyway the resulting optimization principle would be monotonically
related to TV 7→ r(TV, EV).

Comparison of two scenarios and their principles

To illustrate the effect of two of the abovementioned feedback scenarios, in
this case IV and VI, on their own corresponding optimization principles, TV 7→
R(TV, E) and TV 7→ ln[R(TV, E)]/TV, respectively, and on each other’s optimiz-
ation principles, we have added two figures. Figure 1 shows, for both feedback
scenarios, three-dimensional surface plots of both optimization principles, as
functions of the trait value and the environmental condition. The environment
is parameterized by the multiplication factor ψ(E), as given by equations (34)
and (36). Contour plots of the surfaces are given in Figure 2. We indicated
the steady-state environmental condition ψ(Eattr(TV)) with bold curves. They
correspond to the contour lines R(TV,ψ(E)) = 1 and ln[R(TV,ψ(E))]/TV = 0,
respectively. The maxima of R and ln[R] are indicated with dashed curves.

In these pictures, one can find a non-invasible strategy by intersecting two
curves: the contour line defining the steady-state environment (bold) and a
curve where fitness as a function of the trait value is maximal (dashed). Notice
that this description is completely analogous to our characterization of non-
invasible strategies by (4) in section 2.

We clearly see that in case of scenario IV, the maximum of TV 7→ R(TV,ψ(E)),
which is the optimization principle for this scenario, is independent of the en-
vironmental condition, whereas the optimal value of TV for TV 7→ ln[R(TV, E)]/
TV, which is the optimization principle for the other scenario, is only equal
to the non-invasible trait value T̂V at the steady-state environmental condi-
tion ψ(Eattr(T̂V)). For scenario VI it is exactly the other way around. The key
point is that for the proper optimization principles we do not need to com-
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Figure 1: Surface plots of the functions R(TV,ψ(E)) and ln[R(TV,ψ(E))]/TV

for feedback scenarios IV and VI of the case study model described in section 5.
Upper panels: feedback scenario IV, R (a1) and ln[R]/TV (a2) as functions of TV

and ψ(E). Lower panels: feedback scenario VI, R (b1) and ln[R]/TV (b2). See
also Figure 2.
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Figure 2: Contour plots of the functions R(TV,ψ(E)) and ln[R(TV,ψ(E))]/TV

for feedback scenarios IV and VI of the case study model in section 5. The num-
bering of the panels corresponds with Figure 1. Contour curves ofψ(Eattr(TV))
are bold, and the maxima of TV 7→ R(TV,ψ(E)) and TV 7→ ln[R(TV,ψ(E))]/TV

are indicated with dashed curves.
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puteψ(Eattr(TV)), since the dashed curve is a vertical line. This is the graphical
representation of result 2.

Notice that for each scenario, the bold curvesψ(Eattr(TV)) are equal for both
optimization principles (compare the left and the right panels). This expresses
the sign equivalence between R and ln[R] − 1. We can also clearly see that
ψ(E) is pessimized by evolution in both cases. Finally, we stress that it is
only possible to make the plots in Figures 1 and 2 at all because trait and
environment act one-dimensionally.

Laboratory versus field

How should we interpret the difference between heriditary parameters (as show-
ing up in the virgin environment) and parameters under environmental control?
In classic life history models this problem is defined away, by assuming that
the life history parameters of an individual are constants, instead of being po-
tentially under environmental control. In the case of the present model we
distinguish two situations, called laboratory and field. In the laboratory situ-
ation the environment is kept constant artificially, whereas in the field situation
the environment E is adjusted such that

R(T̂V, E) = 1 . (52)

The picture that we have in mind is that by experimental manipulation in
the laboratory situation, the values of the life-history parameters differ from
those in the virgin environment by at most either an additive or a multiplicative
constant. In the field situation, the values of the parameters that are not under
environmental control are equal to the virgin values whereas the remaining,
controlled parameter is obtained by either adding φ(Eattr(T̂V)) or multiplying
(dividing) by ψ(Eattr(T̂V)), defined by (52).

From an evolutionary viewpoint, the ‘field’ situation is the most interesting
one. Figure 3 shows the correlations obtaining between the field observables T̂
and µA, for a fixed value of µJV, for each of the six feedback scenarios.

The numbering of the panels in Figure 3 refers to the feedback scenarios.
The plotted field observables are determined by a combination of the ‘physiolo-
gical parameters’ µAV (the adult death rate in the virgin environment) and T̂V

(the non-invasible value of TV, the juvenile period in the virgin environment),
and the corresponding feedback scenario.

Quite a few things about these plots are worth mentioning. First of all:
different feedback scenarios can lead to radically different patterns, and even
to reversed correlations between life-history variables! Looking more to the
details, we see that the upper limit of µA is identical for all curves. This results
from the fact that for higher values of µAV no strategy can invade into the
virgin environment. [Such values of µAV would lead in a, naive, calculation to
φ(Eattr(T̂V)) < 0 orψ(Eattr(T̂V)) < 1, i.e., values of φ orψ which were excluded
a priori in our model specification.] In panel I, the lower limit of µA results from
the additional mortality due to environmental feedback. In panel III, we see that
a feedback through the adult mortality by necessity exactly compensates for
any difference in the adult mortality rate in the virgin environment. For other
possible parameter combinations we refer to Metz et al. (1996b).
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Figure 3: Correlations between the adult mortality rate µA and the duration
of the evolutionarily stable juvenile period T̂ , both as “observed in the field”,
for the six alternative environmental feedback scenarios described in section 5.
For scenarios I and III, we plotted T̂V versus µAV +φ(Eattr(T̂V)); for scenarios
II and IV, T̂V versus µAV; for scenario V, T̂V + φ(Eattr(T̂V)) versus µAV; and
for scenario VI, T̂Vψ(Eattr(T̂V)) versus µAV. The value of the “physiological
parameter” juvenile mortality in the virgin environment was kept fixed at µJV =
0.25.
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6 Optimization principles and PIPs

From a pairwise invasibility plot (PIP; see van Tienderen & de Jong, 1986; Ger-
itz & Kisdi, to appear) it is rather straightforward to see whether an eco-evolu-
tionary model supports an optimization principle or not.

The zero-contour lines in a PIP indicate which trait values are equivalent to
each other with respect to invasion. Sets of precisely those trait values that
are equivalent to each other are called equivalence classes. If the model sup-
ports an optimization principle then we can order all equivalence classes, and
the zero-lines connect trait values that have identical values of the optimiza-
tion principle: Trait values with a higher (or lower) value of the optimization
principle can (or cannot) invade. Because equivalence relations are symmetric
(i.e., if A is equivalent to B, then B is equivalent to A), all zero-lines in the PIP
are mirror-symmetric with respect to the 45◦ line (where Xinv = Xres, with inv
referring to invader and res to resident ). Additionally, the PIPs have to be anti-
symmetric: if A is invasible by B then B is not invasible by A and vice versa.
The transitivity of equivalence relations (i.e., if A is equivalent to B and B is
equivalent to C then A is also equivalent to C) results in another characteristic
property: All points in the plot where a zero curve has a horizontal or vertical
tangent line correspond to a crossing of a zero curve with the 45◦ line at a
point exactly perpendicular to the tangent line. This property shapes the ‘is-
lands’ around the 45◦ line. Last but not least, there is generally one point Xres

which is non-invasible by any Xinv, and which can invade all Xinv. Only in the
degenerate case that the global maximum of the optimization principle is not
unique there are more such points.

In Figure 4 we plotted some sign structures of ρ(Xinv, Eattr(Xres)) which sup-
port an optimization principle, to illustrate the abovementioned characteristics.

The advantage of judging by means of PIPs, whether an eco-evolutionary
model supports an optimization principle, is that they provide an operational
method. Even for very complicated models, a PIP can be constructed by numer-
ical simulation.

7 Conclusions and discussion

We have argued that the analysis of certain special models can be done by op-
timization- or pessimization arguments, instead of by evolutionary invasibility
arguments. Because extremization methods are much easier to use than game
theoretical methods, they provide a useful tool. However, the conditions under
which extremization methods apply are very special, and if these conditions
are not met then the results of optimization- or pessimization methods do not
make sense. Conceptually, an evolutionary invasibility analysis is the primary
way to go.

The ‘fittest’, i.e. the type favoured by evolution, need not be the best strategy
in other environments than the one it generates if it is the resident type in
the population. We have seen that if, and only if, there exists such a fixed
optimization principle, the fittest is optimal in any environment.

The existence of an optimization principle or, equivalently, a pessimization
principle, is a property of the complete eco-evolutionary model, which is a com-
bination of an evolving trait, a life history and an ecological embedding. Hence,
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Figure 4: Some PIPs which support an optimization principle. For each pair
of panels, the upper one is the optimization principle as a function of the trait
value, and the lower one is the corresponding PIP. In the shaded areas, mutants
have positive fitness, in the white areas mutants have negative fitness.
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the use of an extremization principle can only be justified by taking all these
elements of the model into account.

Especially the effect of the ecological embedding, shaped by the way in
which density dependence is felt by the individuals, is generally underestim-
ated. Given the crucial role of density dependence, this seems an undervalued
field of research.

For more complicated ecological embeddings, shortcuts in the form of ex-
tremization criteria cease to exist. This is in particular the case if the dimension
of the environmental feedback loop is higher than one (see Heino et al., 1997;
Heino, to appear). Mathematically, the existence of an optimization criterion is
degenerate. The question is, of course, whether it is beyond biological reality.
We conjecture that it is our own limited imagination in dreaming up alternat-
ive feedback scenarios for evolutionary models that makes the occurrence of
certain optimization principles in the literature relatively widespread.

Admittedly, it is somewhat disappointing that we can only give necessary
and sufficient conditions for the existence of optimization- and pessimization
principles. We are not able to provide a recipe for the construction of an extrem-
ization principle, for eco-evolutionary models that show a one-dimensionally
acting trait or environment. Actually, there is no general recipe. This is remin-
iscent of the problem with Lyapunov functions in dynamical systems theory:
once a Lyapunov function has been found it is an extremely powerful tool,
but they are difficult to find. For the clonal case, optimization principles act
as Lyapunov functions. But an evolutionary ecologist, using a fixed extrem-
ization principle to determine ESS’s without any further foundation, is like a
mathematician using a Lyapunov function to determine limiting behaviour of a
dynamical system without a proof that it actually is a Lyapunov function.

This brings us to the problem that we have not taken into account the mode
of inheritance. Hammerstein & Selten (1994; Hammerstein 1996) have postu-
lated that genetic constraints may be negligible in long-term evolution, in favour
of game theoretical approaches (see also Matessi & Di Pasquale, 1996). In case
of simple Mendelian genetics, optimization principles act as Lyapunov func-
tions, provided the heterozygote phenotype are intermediate of the homozy-
gote phenotypes. For more complicated modes of inheritance, it will generally
not be possible to find an optimization principle, because they do not exist.
Especially convergence will be problematic.
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