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Abstract

We investigate the interplay of population dynamics and adaptive dynam-
ics via the timing of reproduction, in the context of a caricatural discrete-
time model. We find that semelparity can cause co-existence of different
population-dynamical attractors and that resonance of life-span relative
to population-dynamical fluctuations can have a profound effect on invas-
ibility and the resulting evolutionarily stable life-history. Different local
attractors of the resident population dynamics can have different invasion
properties. Successful invasion in one attractor can be followed by ex-
tinction of the former invader, ultimately leading the resident to the same
attractor, but phase-shifted, or to another attractor. So a strategy can be
‘invasible, yet invincible’. In addition, our analysis emphasizes that, for a
fluctuating population, one must carefully distinguish between polymorph-
isms and a mixed strategies.

Keywords: adaptive dynamics, age at reproduction, complex population dy-
namics, evolutionarily stable strategy, evolutionary dynamics, extinction,
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Introduction

The aim of this paper is to call attention to certain often neglected aspects of
adaptive dynamics, and to do so by means of a simple model involving a spe-
cific life-history characteristic — the timing of reproduction of semelparous
individuals. Our key question is: What influence does the often-made restric-
tion to population-dynamical steady state have on evolutionary predictions?
To answer this question, we study invasibility and evolutionary stability of low-
period population dynamical attractors. Our work is in the same spirit as that
of Van Dooren and Metz (1998), but is more analytical and less numerical.

Triggered by the stimulating paper by Kaitala and Getz (1995), we take Pa-
cific salmon (Oncorhynchus spp.) as the motivating example. Pacific salmon
reproduce in upstream rivers. The fry migrate soon after birth to the ocean
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and, after a variable number of years, the mature fish return to their natal river
to spawn and die.

To set the scene, consider a population of salmon and assume that individu-
als have precisely two options for the period in between birth and reproduction:
3 and 4 years. We combine survival and reproductive potential in a number ck,
with k ∈ {3,4}, and simply ignore that reproduction involves gametes pro-
duced by two individuals of opposite sex. That is, we neglect pair formation,
sexual reproduction and genetic inheritance and pretend that reproduction is
clonal.

When all surviving individuals reproduce after k years, we describe the pop-
ulation dynamics with the delayed difference equation

x(t) = ck x(t − k)E(t) , (1)

where E(t) summarizes the effect of intraspecific competition in the breeding
spots up the river. Here x(t) measures the number of young entering the sea
in year t, and we take the relation

E(t) = g(ckx(t − k)) (2)

(with g a decreasing function and 0 < g ≤ 1) to describe density-dependent
survival in the nursery.

What if some individuals reproduce after three years and others after four
years? Even if we assume that the offspring is identical to the parent in this
respect, there are at least two ways to describe such a situation, depending on
our interpretation of the difference between ‘some’ and ‘others’.

Suppose, first, there are really two different types of individuals, each strictly
adhering to a fixed life-span. That is, the population is dimorphic. Then we can
postulate that

x(t) = c3 x(t − 3) E(t)
y(t) = c4y(t − 4) E(t) ,

(3)

with
E(t) = g

(
c3x(t − 3)+ c4y(t − 4)

)
,

where x and y measure the number of young entering the sea of the types with
a life-span of three and four years, respectively.

Suppose, next, that the population is monomorphic, but that individuals ex-
perience (spatial) environmental stochasticity in the sea, resulting in a certain
distribution of life-spans summarized in one parameter α, which gives, condi-
tional on being still alive, the probability to return to the breeding water after
three years. We call this a mixed strategy when 0 < α < 1, and a pure strategy
when α = 0 or α = 1. (So, incidentally, note that the dimorphic population is
composed of two pure-strategy subpopulations.) Then we might take

z(t) = [αc3z(t − 3)+ (1−α)c4z(t − 4) ] E(t) , (4)

with
E(t) = g

(
αc3z(t − 3)+ (1−α)c4z(t − 4)

)
,

where z(t) measures the number of young entering the sea in year t.
Whenever population dynamics leads to a steady state, the two situations

are indistinguishable. Indeed, if we define α := x/(x + y), z := x + y , the
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second formulation follows from the first. Conversely, when α and z are time
independent and we define x := αz, y := (1−α)z, then the first formulation is
consistent with the second. However, when the population fluctuates, no such
identification is possible! (This is also stressed by Rand et al. 1994.)

In the first formulation, the reduced state spaces x ≡ 0 and y ≡ 0 are
invariant and we may (and will) study the stability of the boundary attractors
living there. This is an example of an invasibility question: Given a resident
type, will a different type, called an ‘invader’, grow when rare? The underlying
assumption is that the invader originated from the resident by mutation. Note
that, in the first formulation above, it is natural to restrict attention to a finite
number of types (in this case, two).

In the second formulation we may, in a similar spirit, ask what happens
when, by mutation, a new type arises with a somewhat different value of α.
(The idea, of course, is that some internal parameter is changed slightly, such
that the environmental stochasticity then leads to a different fraction returning
after three years.) Thus one is led to consider the system

z1(t) = [α1c3z1(t − 3)+ (1−α1)c4z1(t − 4) ] E(t)
z2(t) = [α2c3z2(t − 3)+ (1−α2)c4z2(t − 4) ] E(t) ,

(5)

with
E(t) = g

(
α1c3z1(t − 3)+ (1−α1)c4z1(t − 4)

+α2c3z2(t − 3)+ (1−α2)c4z2(t − 4)
)
.

Again there are boundary attractors that might be stable (invasion fails) or
unstable (invasion has success). But a difficulty, of course, is that a continuum
of α-values is possible. And even if the α of the resident is fixed at some value
and only small mutations are allowed, there is still a continuum of possibilities.

Underlying the dynamic description of natural selection known as Adapt-
ive Dynamics (or Evolutionary Dynamics, when genetics is taken into account)
are therefore two further assumptions. The first concerns a time-scale differ-
ence between mutation and convergence to a population-dynamical attractor.
The idea is to ignore the possibility of a next (potentially) successful mutation
arising before the transients triggered by a successful mutation have died out.
The second assumption asserts that successful invasion, together with failure
of invasion under role reversal of resident and invader, guarantees replacement:
the invader becomes the resident. (For special models, one can actually prove
that such a competitive exclusion principle holds.)

Thus adaptive dynamics is described, on an (implicit) discrete time basis,
as a trait substitution sequence. The states are the attractors of the popu-
lation dynamics and the jumps are driven by an ill-known stochastic process
(i.e. mutation). [See Eshel (1996) and references therein for pioneering work;
see Rand et al. (1994); Metz et al. (1996) and Geritz et al. (1997, 1998) for the
state–of–the–art in Adaptive Dynamics. For a combination of game theory and
genetics, Hammerstein (1996) has coined the name Streetcar Theory of Evolu-
tion. One of the nice things about this metaphor is the question it suggests:
Does the streetcar ever reach its final stop? Also, see the other papers in this
special issue of the Journal of Mathematical Biology on Evolutionary Dynamics
edited by Diekmann, Christiansen and Law (1996).]

An Evolutionarily Stable Strategy (ESS; Maynard Smith and Price, 1973; May-
nard Smith, 1982) is an unbeatable trait value (or strategy) in the sense that
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if the resident has (plays) it, any invasion by individuals with a different trait
value or strategy is bound to fail. (A local ESS restricts competitors to have
only slightly different trait values or strategies.) Note that this corresponds to
a steady state of the adaptive dynamics, but that it is not built into the defini-
tion (Maynard Smith, 1982) that an ESS is an attractor of the adaptive dynamics.
(So the ‘Stable’ in the ESS acronym is misleading and to interpret the first S as
meaning ‘Steady’ is to be preferred. It would be even more appropriate to call
a strategy defined in this way a Non-Invasible Strategy.) Therefore, the ESS’s
need further classification, for which we refer to Metz et al. (1996) and Ger-
itz et al. (1997, 1998). The possibilities include the so-called ‘Garden of Eden’,
which is an adaptive repellor, and a ‘branching point’, at which monomorphism
is lost by means of an expanding protected dimorphism resulting from mutual
invasibility.

Even though the description above does not unambiguously fix a mathemat-
ical framework, the program should now be clear: find attracting ESS’s (and
study how they depend on the model parameters that are considered to be
fixed, i.e. not under natural selection).

Assuming population dynamics leads to a steady
state

Following Kaitala and Getz (1995), we carry out the program for the mono-
morphic setting in this section under one more assumption: that the popula-
tion dynamical attractor is a steady state. In such a context, the criterion for
successful invasion takes the form

R0(αinv, Ēαres) > 1 , (6)

where inv stands for invader and res stands for resident. Or, in words, the
expected life-time production of offspring of an individual with strategy α =
αinv, in the steady environmental condition E = Ēαres as set by the resident with
α = αres, should exceed 1. For arbitrary α and E we have

R0(α, E) =
(
αc3 + (1−α)c4

)
E (7)

and steady state amounts to

R0(αres, Ēαres) = 1 (8)

because, on a generation basis, in steady state the average resident individual
exactly replaces itself. From (7) and (8) it follows (see Appendix 1) that a
strategy α∗ is an ESS if, and only if, the function

α 7→ Ēα (9)

has a minimum at α = α∗ or, equivalently,

α 7→ αc3 + (1−α)c4 (10)
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has a maximum at α = α∗. The first formulation, (9), expresses the other side
of the coin of optimal adaptation to the environment: If density dependence
acts by feedback to a one-dimensional environmental variable, then only the
type that makes — as a resident — life as hard as possible is invulnerable to
invasion. The second formulation, (10), tells us the outcome: α∗ = 1 is an ESS
if c3 > c4 and α∗ = 0 is an ESS if c3 < c4.

The invasibility criterion also shows that the trait substitution sequence ex-
hibits a monotone increase to α∗ = 1 in the first case and a monotone decrease
to α∗ = 0 in the second case. That is, the ESS is an attractor of the adaptive
dynamics. If we consider the dimorphic (rather than the monomorphic) setting
and assume that population dynamics inevitably results ultimately in a steady
state, we obtain likewise that the pure strategy α = 1 outcompetes the pure
strategy α = 0 if c3 > c4, whereas the opposite happens if c3 < c4.

So, under the restrictive assumption of convergence to steady state (and
taking for granted that take-over is guaranteed when invasibility is not mutual),
the situation is crystal clear. What if we assume that population dynamics leads
to sustained oscillations?

Periodic solutions with low period

Motivated by the outcome of our steady-state analysis, we first investigate what
are the periodic attractors for the pure-strategy situation described by

x(t) = f(cx(t − k)) , (11)

with f(x) = x g(x) and k = 3 or k = 4. Essentially, this delayed difference
equation consists of k independent copies of the equation

x(t̃) = f(cx(t̃ − 1)) (12)

derived by putting

t̃ = kt + j , j ∈ {1, . . . , k} . (13)

(In other words, the delayed difference equation is a non-linear analogue of
a Leslie matrix describing k uncoupled populations, each reproducing after
exactly k years; or, in more technical terms, an irreducible but non-primitive
positive Leslie matrix.) For the ‘one-humped’ functions f that we consider, an
increase in c will lead to a sequence of period-doubling bifurcations for the
‘ordinary’ difference equation with k = 1 (see Fig. 1 for a numerical example).
At the first of these, the steady state loses stability and a stable period-two
solution hl originates. Here h means high and l means low and both refer to,
here and in the rest of this paper, the E-values of the period-two solution, which
is an endless repetition of the block hl.

The delayed version shows a k-fold copy of this bifurcation, in the sense
that the bifurcation concerns the behaviour of (12); however, to cover the full
set of integer time values, we need all j ∈ {1, . . . , k} in (13). What pattern in
time results? It will always be 2k-periodic, but the minimal period may in fact
be a divisor of 2k. To find out about this more precisely, one has to perform an
elementary combinatorial exercise, in particular since we want to identify pat-
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Fig. 1: Bifurcation diagram of the delayed difference equation (1), x(t) = c x(t−
1) E(t), with E(t) = exp(−cx(t−1)), (takeg(x) = exp(−x) in (2)), and c ranging
from 1 to 25.

terns that are translates of each other. It turns out that the k subpopulations,
co-existing independently in time, show, for small k, only a relatively small
number of periodic patterns. We invite the reader to verify that for k = 2 there
exists, modulo translation, only a period-four solution hhll, that for k = 3 the
complete catalogue of possibilities consists of a period-two solution hl and a
period-six solution hhhlll, while for k = 4 it consists of the two period-eight
solutions hhlhllhl and hhhhllll (see Table 1). We refer to Diekmann and van
Gils (1999) for a systematic analysis for general k and general periodic solutions
of the ‘ordinary’ difference equation.

As the decoupling argument guarantees that these periodic solutions are
stable, we conclude that semelparity promotes the co-existence of local attract-
ors, when life-span exceeds one year. The different attractors correspond to
different combinations of phase of the uncoupled subpopulations.

Invasibility of the attractors

Next, we have to check invasibility for each of the attractors. Without going
into quantitative detail (but see Appendix 2), we present a qualitative argument
which clearly exemplifies its essence (i.e. resonance). To facilitate the descrip-
tion, we simply call individuals with a life-span of k years k-individuals.

We consider a population of 3-individuals, assume c3 > c4, and ask whether
or not 4-individuals can invade (i.e. increase in numbers when rare). If the
population of 3-individuals settles to a steady state, then, as we saw in section ,
the answer is ‘no’. Now suppose c3 is such that the steady state is unstable
and the 3-population will evolve either to the period-two attractor or to the
period-six attractor. These are both characterized by two E-values, the high E+
of good years and the low E− of bad years. [Please note our terminology: the
good refers to a high environmental value (i.e. high survival); that is, we take
the point of view of a newborn individual. This is exactly opposite to the ‘good’
that human observers may use to characterize a year in which many salmons
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life-span 2 period 4
h •• ◦◦ ◦◦ ◦◦ ◦◦ ◦◦
l •• ◦◦ ◦◦ ◦◦ ◦◦ ◦◦

life-span 3


period 2

h • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
l • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

period 6
h ••• ◦◦◦ ◦◦◦ ◦◦◦
l ••• ◦◦◦ ◦◦◦ ◦◦◦

life-span 4


period 8 (a)

h •• • • ◦◦ ◦ ◦ ◦◦ ◦ ◦
l • •• • ◦ ◦◦ ◦ ◦ ◦◦ ◦

period 8 (b)
h •••• ◦◦◦◦ ◦◦◦◦
l •••• ◦◦◦◦ ◦◦◦◦

Table 1: Possible periodic patterns of population numbers after the first period-
doubling bifurcation of equation (11), for populations of individuals with a life-
span (k) of 2, 3 and 4 years, respectively. The elementary block that is repeated
is indicated by filled dots.

migrate up river and in which many larvae are produced.] These E-values are
such that c2

3E+E− = 1, since for successive generations of 3-individuals, good
and bad years of reproduction alternate and on (geometric) average the number
of offspring must be one.

Now imagine the 3-population has settled into the period-two attractor and
a 4-individual happens to be born in a good year. Then its offspring will also be
born in a good year. And so on. So the average number of offspring is simply
c4E+ and we want to know whether or not this number exceeds one. To make
the comparison with 3-individuals easier, we look two generations ahead and,
using that c2

3E+E− = 1, write

(c4E+)2 = c2
4E2

+
c2

3E+E−
=

(
c4

c3

)2 E+
E−

(14)

which clearly demonstrates that the inherent disadvantage c4/c3 < 1 can, in
principle, be overcome by systematic tuning to good years as reflected in the
factor E+/E− > 1. For a given ratio of c3 and c4 (i.e. a fixed value of c4/c3),
the effect will not be strong enough close to the period-doubling bifurcation,
where E+ and E− do not differ very much (see Fig. 1). But once E+/E− exceeds
(c3/c4)2, 4-individuals tuned to the good years do increase in numbers when
rare.

In the same way it follows that when a 4-individual is born in the first or
the third good year, or in the middle bad year, of the period-six solution, its
descendants will experience two good years and one bad year out of every three
reproduction events. Hence the invasibility condition becomes c3

4E2
+E− > 1,

which, by looking six generations ahead and using c2
3E+E− = 1, we can write in
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the form
E+
E−

>
(
c3

c4

)6

. (15)

We observe that the period-six attractor is more difficult to invade for the 4-
individuals than the period-two attractor, since the synchronization with the
good years is less perfect (see also the next section, especially Fig. 2).

Two conclusions derive from these observations. First, the steady state ana-
lysis does not yield reliable evolutionary predictions when extended to para-
meter regions in which the population actually fluctuates. This is well known
in the context of fluctuating environments, where ‘bet hedging’ is probably the
key issue. In the present context it is more a matter of resonance, with the
invader taking advantage of its better synchronization with the good years.
Secondly, the invasion criterion is different for different attractors and, as a
consequence, we cannot simply state that a population with α = 1 is (or is not)
invadable by individuals with α = 0. The co-existence of attractors undermines
the idea of representing the adaptive dynamics as a trait substitution sequence.

So far, we have concentrated on the invasion properties of the pure strategy
α = 0. As one might guess from the synchronization argument, for given c3/c4,
invaders with a mixed strategy α ∈ (0,1) need a bigger E+/E− for success than
those with α = 0. In fact, the E+/E− that is required for success is a monotonic
increasing function of α, with a finite limit for α ↑ 1. So α = 1 also loses its
local (in α-space) uninvasibility once E+/E− is sufficiently large.

In Appendix 2 we present the calculations that underly the above assertions,
for the technically somewhat simpler case of competition between annuals and
biennials.

Finally, what if c4 > c3? Then the steady-, period-two and period-six at-
tractor of a 3-resident are all invadable by 4-individuals. Conversely, a steady-
or any of the two period-eight attractors of a 4-resident is uninvadable by 3-
individuals, the point being that 3 and 8 do not have a common factor, which
makes tuning to good years impossible. (See Appendix 2 for the technical elab-
oration in the context of competing annuals and biennials.)

Successful invasion leading to co-existence

Motivated by our finding above that the pure strategy α = 0 is the ‘best’ invader
in the low-period attractors of the α = 1 resident, from now on we restrict
our attention to the competition between the two pure strategies. In this and
the following subsection, we describe some numerical experiments that are
based on equation (3) with the choiceg(x) = exp(−x) and the parameterization
c3 = c, c4 = γc, with fixed γ ∈ (0,1). That is, we now use c as a bifurcation
parameter.

In Fig. 2 we introduce, for c-values above the first period-doubling bifur-
cation, mutants with a life-span of four years at low frequencies in a ‘good
year’ of a fluctuating resident population with a life-span of three years and
plot the resulting population-dynamical attractor. (That is, we wait until the
transients have disappeared. Also note that, because c = c3, period-doubling
bifurcations of the 3-resident population dynamics occur for the same values
of c as in Fig. 1.) We see that the period-two attractor (Fig. 2A) ‘inherits’ the
uninvasibility from the steady state at lower c-values, but can be invaded if
c is greater than approximately 8.0, whereas the period-six attractor (Fig. 2B)
remains evolutionarily stable for c-values substantially greater than 8.0. The
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Fig. 2: The attractor of population numbers x(t) and y(t), of individuals with
a life-span of three and four years respectively, of the dimorphic system (3)
with g(x) = exp(−x), c3 = c and c4 = 0.5 c, for c-values just above the first
period-doubling bifurcation. The resident population with life-span three was
fluctuating either on the period-two attractor (panel A) or on the period-six
attractor (panel B) when life-span four mutants were introduced in small num-
bers.
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Fig. 3: Values of the environmental variable E(t) for the attractors of the di-
morphic system (3) shown in Fig. 2. Panels A and B correspond to panels A
and B of Fig. 2.

dimorphic system which results after successful invasion has a period-four at-
tractor, still characterized by yearly alternations of ‘good’ and ‘bad’, but with
two levels of each.

From Fig. 3 we conclude that, in this case, evolution tends to diminish the
environmental fluctuations caused by population dynamics. (One could call
this another instance of evolution making the world closer to ‘ideal free’. How-
ever, one should not apply this conclusion to other situations without critical
examination, as it may depend crucially on the way the trait under investigation
is constrained in its steering effect on population dynamics.)

The resident strikes back: Resilience despite invasibility

More numerical experiments (Mylius and Diekmann, submitted) have revealed
a striking phenomenon to occur when c is increased further beyond the value
at which the period-two attractor becomes invasible.

Let us begin with a population of 3-individuals that oscillates with period
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two, the good years being the even years. Next, introduce a small population
of 4-individuals in an even year. After a while, the 4-population will constitute
an appreciable part of the total population, and a subtle interaction between
the 3- and 4-subpopulations sets in. As a result of this interaction, the qual-
ity of even years deteriorates, while the quality of the odd years increases. In
fact, after a certain period, the even years are worse than the odd years. At
this point, the competitive advantage of 4-individuals turns into a competitive
disadvantage, as now the reproduction events take place in bad years. There-
fore, the 4-subpopulation is doomed to become extinct. In the end, we have a
population of 3-individuals that oscillates with the period two, the good years
being the odd years.

Similarly, depending on the value of c, invasion of the period-two attractor
may lead, after a temporary phase of turmoil, to the period-six attractor in a
phase at which the 4-individuals are at a disadvantage.

The following question about terminology presents itself: should we call
the trait or strategy of a resident an ESS (or, for that matter, an unbeatable trait
or strategy) when the resident ultimately outcompetes every invader, yet the
invader population may first reach a non-negligible size? We coin the term ‘in-
vasible yet invincible’ for such strategies and emphasize that the phenomenon
is possible only when the invasion exponent is multi-valued as a reflection of
co-existing attractors, which should be expected in particular whenever the
population consists of subpopulations that interact only weakly or not at all.

Conclusions and discussion

In an earlier publication (Mylius and Diekmann, 1995), two of the present au-
thors emphasized that evolutionary predictions depend on the precise form of
density dependence. In a similar spirit, we have tried to unravel in the present
paper the potential influence of some other, often implicit and therefore rather
hidden, assumptions that are frequently made when analysing the influence of
natural selection on life-history characteristics.

The difficulty of analytically calculating any attractor more complicated than
a steady state, is a strong stimulus to simply pretend that population dynamics
leads to a steady state and then start evolutionary considerations from there
(however, see Metz et al. 1992; Gatto 1993; Rand et al. 1994 and Ferrière and
Gatto 1995). That the conclusions may be misleading is in the main demon-
strated by models that show how risk aversion or ‘bet hedging’ in a not entirely
predictable world provides an advantage to strategies that would be inferior
in a steady world (Tuljapurkar, 1990, 1994). Here we found a different reason
why conclusions based on the assumption of a steady world may be mislead-
ing: When the trait is related to the timing of life-history events, an invader
may sample the fluctuating environment in a rhythm that differs from that of
the resident and thus, by partly synchronizing to favourable conditions, take
advantage.

In a steady world there is no need to distinguish between a polymorphism
and a mixed strategy. When time is heterogeneous, either by externally driven
environmental fluctuations or by endogenous fluctuations resulting from feed-
back, the distinction between polymorphisms and mixed strategies cannot be
ignored, as it leads to differences in both population- and adaptive dynamics.
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In our opinion, this is a strong motivation to work with traits that allow
for a mechanistic, rather than phenomenological, interpretation. For instance,
it seems reasonable to assume that salmon base the irreversible transition to
prepare for the return to freshwater on some indicator of their physi(ologi)cal
condition, such as size. In combination with a stochastic food supply, this
then may easily lead to some returning after three years and others after four
years. Thus it seems reasonable to replace the phenomenological parameter α
by the critical size, together with some probabilistic description of growth. [We
intend to study such a model in the near future. We would also like to study
the similarity with delayed flowering in biennial plants (see also de Jong et al.
1987 and Wesselingh 1995).]

Another, related, point is that the need to consider genetics may be greater
when the trait relates to timing while population dynamics creates fluctuations,
since the resonance phenomenon has assortative mating as a side-effect. [To
these suggestions we like to add one more (i.e. the addition of spatial structure),
to remedy the rather weak points of the model discussed here, as a description
of real-world salmon. The point is that the physical strength resulting from
an extended stay at sea may allow more favourable breeding waters higher up-
stream to be reached. As noted by Kaitala and Getz (1995), spatial heterogeneity
may easily lead to assortative mating. For some preliminary results concerning
the interplay of timing and positioning of offspring, see Diekmann (1997). Our
longer-term objectives include the study of a model — discrete or continuous —
which combines size considerations with spatial structure.]

Conceptually, the state of the adaptive dynamics process is given by the
attractor of the population dynamics process (Rand et al., 1994). Unfortunately,
these attractors are, in general, not easily parameterized. Or, in other words,
it is not easy to define a state space for the adaptive dynamics. In Metz et al.
(1996) the approach was to assume that a list of the traits which are represented
in the population-dynamical attractor uniquely fixes the attractor. Despite the
topological complexity of the space of all such lists, the authors managed to give
a complete classification of ESS’s for the case of a one-dimensional trait. (For
higher dimensional traits, aspects of the mutation process can come in crucially;
see for instance Dieckmann and Law 1996; and Matessi and Di Pasquale 1996.)

The example presented here quite naturally leads to co-existing attractors.
Thus, like the example presented in Van Dooren and Metz (1998), it provides
the newly shaped theory of adaptive dynamics with a stimulating challenge.

For certain parameter values, we found (a form of, as one boundary attractor
was not invasible) mutual invasibility, yet no protected polymorphism (i.e. no
internal attractor). The resident was able to outcompete the invader, but only
by achieving a phase-shift during the interaction that took place after the in-
vader population had grown to an appreciable size. When building a general
theory of adaptive dynamics, this phenomenon of resilience, or ‘invincibility
despite invasibility’, as we like to call it, cannot be ignored. [After this work
was completed, M. Doebeli (1998) informed us that he constructed an example
of this phenomenon in the context of a metapopulation model.]

As we intend to demonstrate in detail in future work (Mylius and Diekmann,
submitted), the co-existence of attractors with different invasion properties is
a robust phenomenon (that is, it will survive small perturbations of the model).
The phenomenon that successful invasion of one boundary attractor leads in
the end to another attractor in the same boundary is also robust. In the rather
degenerate situation considered here, we also found that successful invasion
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could ultimately result in the same (but phase-shifted) attractor. When per-
turbing the model, such a (non-generic homoclinic) connection will inevitably
be broken and an internal attractor will be formed. Yet one should realize that
many points on this internal attractor will lie close to the boundary attractor,
which means that the successful invader is likely to experience long periods
of low density, with the associated risk of going extinct (due to demographic
stochastic effects that are not incorporated in the model). So even this phe-
nomenon, despite its non-generic character, may be of some importance.
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Appendices: Derivation of the invasibility conditions

We analyse the invasibility conditions for the case where the population dynam-
ics leads to a steady state (Appendix 1), and for the case where the population
dynamics has a low-periodic solution (Appendix 2). The first case is explained
for the competition between 3-individuals and 4-individuals (as covered in the
text). The second case is treated in the setting of the competition between annu-
als and biennials: this yields smaller matrices and is consequently easier to ana-
lyse, but analogous to the case where 4-individuals compete with 3-individuals.
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1. Equilibrium populations

Combining (7) and (8) we deduce

Ēαres = 1
αresc3 + (1−αres)c4

. (16)

Substituting this in (7) we find that

R0(αinv, Ēαres) =
(
αinvc3 + (1−αinv)c4

) 1
αresc3 + (1−αres)c4

. (17)

A strategy α∗ is an ESS if it cannot be invaded by any alternative strategy;
in other words, if R0(α, Ēα∗) < 1 for every α ≠ α∗. From (17) it is clear that
this is the case if, and only if, the function α 7→ Ēα has a minimum at α = α∗
or, equivalently, α 7→ αc3 + (1−α)c4 has a maximum at α = α∗.

2. Periodically fluctuating populations

Here, we present the invasibility analysis of periodic solutions of low period in
the setting of the competition between annuals and biennials, as described by

zi(t) = [αi c1 zi(t − 1)+ (1−αi) c2 zi(t − 2) ] E(t) , i ∈ {1,2} ,
E(t) = g

(∑2
i=1

[
αic1zi(t − 1)+ (1−αi)c2zi(t − 2)

] )
(18)

(cf. equation (5)) when considering mixed strategies and by

z1(t) = c1 z1(t − 1) E(t)

z2(t) = c2 z2(t − 2) E(t) (19)

E(t) = g
(
c1z1(t − 1)+ c2z2(t − 2)

)
(take α1 = 1 and α2 = 0 in (18)) when considering pure strategies and the
possibilities of dimorphism.

We shall contrast the situation c1 > c2, where the annual outcompetes the
biennial under steady state conditions, with the situation c2 > c1, where the
opposite is the case.

Assume c1 > c2 and assume that c1 and g are such that z1(t) = c1z1(t −
1)g(c1z1(t−1)) has a stable period-two solution, which we characterize by the
two values E+ and E− that g(c1z1(t)) takes, with the convention that E+ > E−.
Note that, necessarily

1 = c2
1 E+E− , (20)

since in two steps z1 should return to its original value.

Imagine the annual cycles in this manner and, by mutation, a variant origin-
ates that has a different value of α. Will it start to increase in numbers?

To decide this, we form a matrix with entriesmij giving the expected number
of offspring produced in year i by an individual that was itself born in year j,
with years counted modulo two and, to fix the phase of the resident cycle, E =
E+ in odd years and E = E− in even years. This definition in words immediately
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implies that the matrix is given by(
(1−α)c2 E+ αc1 E+
αc1 E− (1−α)c2 E−

)
. (21)

Consequently, the characteristic equation is

λ2 − (1−α)c2 (E+ + E−) λ+ (1−α)2 c2
2 E+E− −α2 = 0 (22)

and all we have to do is to check whether or not the positive real solution λd

exceeds 1. To emphasize the dependence on the invader’s α, we shall write
λd(α).

We claim that:

• λd(0) > 1 if, and only if, c2 E+ > 1 (note that, by (20), this is equivalent to
E+/E− > (c1/c2)2 );

• when c2 E+ > 1 but c2 (E+ + E−) < 2, there is an interval [0, ᾱ) on which
λd(α) exceeds 1, whereas on the complementary interval (ᾱ,1), λd(α) is
less than 1;

• ᾱ is, for fixed c1/c2, an increasing function of E+/E− ;

• when c2 (E+ + E−) > 2, λd(α) exceeds 1 on [0,1) .

In biological terms, this means that when the strict biennial cannot invade,
no strategy can, so the annual strategy is a global ESS. There is a range of
parameter values for which the annual strategy is a ‘local’ ESS, in the sense that
it cannot be invaded by the ‘α–is–slightly–smaller–than–1’ strategy, yet not a
global ESS, since it can be invaded by ‘α–is–small’ strategies. For the choice
g(x) = 1 − x, one can check analytically that, by increasing c1 and c2, while
keeping their ratio constant, the annual strategy ceases to be a local ESS. And
for the choice g(x) = exp(−x), this is easily checked numerically.

To prove the claims, we denote the left-hand side of (22) by F(λ,α) and note
that it is a quadratic polynomial in λ (for fixed α) and in α (for fixed λ) which
satisfies

F(1,1) = 0 . (23)

So, F(1, α) can have at most one other zero. Next note that

∂F
∂α
(1,1) = c2 (E+ + E−)− 2 (24)

and

∂F
∂λ
(1, α) = 2− (1−α)c2 (E+ + E−) (25)

and

F(1,0) = (1− c2E+) (1− c2E−) . (26)

Now, suppose that c2 (E++E−) < 2: then, ∂F
∂α
(1,1) < 0 and so F(1, α) = 0 has

a root in (0,1) if, and only if, F(1,0) < 0 (since there is either no root or exactly
one root, but never two, three or more roots). Since c2 E− < c1 E− < 1, the sign
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of F(1,0) equals the sign of 1 − c2 E+. Under the condition c2 (E+ + E−) < 2,

we deduce from (25) that ∂F
∂λ
(1, α) > 0. For fixed α, F(λ,α) is a parabola with a

minimum. So

F(1, α) > 0 and
∂F
∂λ
(1, α) > 0 ⇒ λd(α) < 1 ,

F(1, α) < 0 ⇒ λd(α) > 1 .

(27)

Hence the first two claims are justified. �

With the help of (20) we can rewrite (22) as

λ2 − (1−α) c2

c1
(θ + 1

θ
)λ+ (1−α)2

(
c2

c1

)2

−α2 = 0 , (28)

where θ = c1 E+ =
√
E+/E− > 1 and 1/θ = c1E− < 1. Then ᾱ as a function of θ

is determined by the equation λd(ᾱ, θ) = 1, where λd is the positive real root.

We know already (see the second claim) that ∂λd

∂α
< 0, so if we can check that

∂λd

∂θ
> 0, the result dᾱ

dθ
> 0 follows directly from the implicit function theorem.

Let us call the left hand side of (28)G(λ, θ). Then ∂G
∂θ
= −(1−α) c2

c1
(1− 1

θ2 ) < 0.

At the root λd we have ∂G
∂λ
> 0 (see above). So by the implicit function theorem,

we conclude that ∂λd

∂θ
> 0. That shows that the third claim is warranted. �

When c2 (E+ + E−) > 2, ∂F
∂α
(1,1) > 0 and F(1,0) < 0, so F(1, α) cannot have

a zero on [0,1), and consequently λd(α) > 1. We have verified the fourth claim
as well. �

In terms of system (19), describing the competition between pure strategies,
the conclusion is that the period-two solution with z2 ≡ 0 loses its stability
when c2E+ exceeds 1 and a period-two solution in which annuals co-exist with
biennials that are present only in odd years takes over. The synchronization to
good years overcomes the disadvantage c2 < c1.

Now let us look at the reverse situation, c2 > c1. Assume the biennials cycle
with period four, characterized by two values E+ and E− that satisfy c2

2 E+E− = 1
and occur in repeated E+E+E−E− blocks (see Table 1). Let us fix the phase by
requiring that, in year 1, we have the first E+ of such a block and let us count
years modulo four. The next generation matrix then takes the form

0 0 (1−α)c2 E+ αc1 E+
αc1 E+ 0 0 (1−α)c2 E+

(1−α)c2 E− αc1 E− 0 0
0 (1−α)c2 E− αc1 E− 0

 . (29)

We restrict the attention to α = 1 and then find the characteristic equation

λ4 − c4
1 E

2
+ E2

− = 0 . (30)

But since c2
2 E+E− = 1 and c1 < c2, necessarily c4

1 E2
+ E2

− < 1 and therefore
|λ| < 1. The annuals cannot profit from the time-inhomogeneity and their
disadvantage in the periodic situation is as strong as in the steady situation.
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