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The Resident Strikes Back: Invader-Induced Switching of Resident Attractor
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The aim of this paper is two-fold: (a) by way of example, we elucidate the phenomenon of
invader-induced switches in a resident attractor; (b) we expose in detail how resonance and
phase have a strong impact when semelparous organisms (as, e.g. Paci"c salmon) with di!erent
life-cycle lengths compete in a self-induced periodically #uctuating environment. We analyse
a simple model for the competition between annuals and biennials, focusing on the situation
that the annual population in isolation converges to a two-cycle. Well-timed biennial mutants
sample the periodically varying environment more e$ciently than the annual resident. They
can invade successfully even when they are inferior to the resident, in the sense that they have
lower viability and/or fertility. Successful invasion can lead to resonance-mediated coexistence
if the invader is rather inferior to the resident. Remarkably, for mutants that are less inferior to
the resident, successful invasion by a mutant strategy will inevitably be followed by the
extinction of the former invader and concurrent re-establishment of the resident. The expul-
sion of the invader is brought about by an invasion-induced phase shift or attractor switch. We
call this phenomenon &&the resident strikes back'' and say that the resident strategy is invasible,
yet invincible. After the resident has struck back, other mutants can successfully invade again.
On a longer time-scale, this might lead to an intermittent occurrence of ultimately inferior
strategies. The results show that even in a deterministic setting, successful invasion does not
necessarily lead to establishment and that mutual invasibility is not always su$cient for
coexistence.
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Introduction

Despite the widespread occurrence of non-
equilibrium dynamics in natural ecosystems,
standard evolutionary theory is largely based on
the equilibrium paradigm. Some theoretical re-
sults, however, point out that competition be-
tween traits or strategies may have a di!erent
outcome when the environment #uctuates. Rela-
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tively well-known examples concern an environ-
ment that is not entirely predictable, for example
due to a stochastically #uctuating external driver
(Tuljapurkar, 1990, 1994). In these cases, strat-
egies that would be inferior in a steady world, can
be superior.

However, self-induced (quasi-)periodic or
chaotic population dynamics in a deterministic
setting also have an impact on competitive
(dis)advantages of strategies. In an earlier paper
(Diekmann et al., 1999), we described a simple
model for the evolution of the age at reproduc-
tion of Paci"c salmon (Oncorhynchus spp.).
( 2001 Academic Press
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Paci"c salmon is a semelparous species, which
means that individuals reproduce only once and
then they die. We demonstrated the coexistence of
di!erent periodic attractors, with di!erent in-
vasion properties (see also Van Dooren & Metz,
1998). If the resident population density has con-
verged to one of these attractors, then well-timed
mutant strategies can invade (whereas ill-timed
mutants cannot invade). This can happen despite
these mutants being inferior to the resident, in
the sense that they reproduce at an age where the
contribution to a next generation (as a result of the
combined e!ect of survival and reproductive po-
tential) is lower than at the reproductive age of the
resident. In steady-state resident dynamics, such
inferior mutants would not have any chance of
invading successfully: the strategy which programs
individuals to reproduce at a superior age is non-
invasible [i.e. an evolutionarily stable strategy, or
ESS; see Maynard Smith & Price (1973) and
Maynard Smith (1982)] as well as an attractor of
the adaptive dynamics. Gatto (1993) gives another
example of an inferior genotype successfully in-
vading an oscillatory resident [see lso Ferrière
& Gatto (1995) for a theorem on invasibility and
non-equilibrium dynamics and Metz et al. (1992)
and Rand et al. (1994) for more background].

In certain situations (to be described in detail
below), successful invasion will inevitably be fol-
lowed by the extinction of the invader and con-
current re-growth of the resident to its former
levels of population density. The expulsion of the
invader is achieved by an invasion-induced phase
or attractor switch of the resident. In other
words, the invader seems to dig its own grave
while pestering the resident, by forcing a phase or
rhythm shift in its ups and downs. The resident
strategy is then &&invasible, yet invincible'' for
these mutants. We call this phenomenon &&the
resident strikes back''.

Our formulation so far re-iterates the message
of Diekmann et al. (1999) and Mylius et al. (in
press) and focuses on adaptive dynamics. The
aim of the present paper is to expose in detail
how resonance and phase have a strong impact
when semelparous organisms with di!erent life-
cycle lengths compete in a self-induced period-
ically #uctuating environment. To do so while
keeping life simple, we analyse a model of nursery
competition between annuals and biennials. We
neglect pair formation, sexual reproduction and
mode of inheritance and we assume that repro-
duction is clonal. In Diekmann et al. (1999) we
addressed both the pure- and the mixed-strategy
case, but here we will restrict our attention to
evolutionary competition between two types,
each having a "xed age at reproduction. That is,
we focus on a pure-strategy formulation.

We present three main new results. (a) Coun-
terintuitively, better invaders perform worse in
the long run due to the reaction they invoke: the
resident strikes back at strong competitors while
tolerating the coexistence of the weaker ones. (b)
We show how the transition from &&stable coexist-
ence of the annual with one line of the biennial''
to &&the resident strikes back'' is achieved by a com-
plicated global bifurcation involving two hetero-
clinic tangencies and a heteroclinic tangle in
between. (c) We describe the interaction between
the annual and both lines of the biennial in the
&&resident strikes back'' subset of parameter space
in terms of an attracting heteroclinic cycle at
the boundary, corresponding to an in"nitely ex-
tended sequence of ever more delayed upswings
and downswings of, alternatingly, the even-year
and the odd-year subpopulation of the biennial.

The Basic Population Model and its Dynamics

Assume that reproduction only happens at age
k. Let the variable x (t) denote the number or
density of young-of-the-year (YOY). When intra-
speci"c competition is restricted to the breeding
spots and/or the nursery we can postulate that
the dynamics of the population is described by
the delayed di!erence equation

x(t)"f (cx(t!k)), (1)

where the parameter c combines the relevant
information about individual survival and repro-
ductive potential at the reproductive age k. For f,
we take

f (x)"x/(x), (2)

where / is a decreasing function with 0(/)1
and /(0)"1, which measures the e!ect of intra-
speci"c competition in the breeding spot or nur-
sery on successful maturation. We assume that



FIG. 1. Attractors of x(t) as a function of c, generated
by the delayed di!erence equation (3), x(t)"cx(t!
k) exp(!x (t!k)), for k3M1, 2,2N. Between c

A
"e2

+7.389 and c
B
+12.509, a stable period-two solution

exists.
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the graph of f has a &&humped'' shape. For the
functions / that we consider, population dynam-
ics exhibits convergence to equilibrium for small
c. Increase of c will lead to a cascade of period-
doubling bifurcations. Well-known examples
from the literature include the logistic equation,
the Ricker (1954) equation, Hassell's (1975) equa-
tion, and others. We choose /(x)"exp(!x), for
computational simplicity. Other choices yield
qualitatively the same results. Furthermore, we
scale the system by xPcx, to get

x(t)"cx (t!k)e~x(t~k). (3)

Notice that eqn (3) is equal to Ricker's equation
when we look every k-th year, as with a strobe
light. This re#ects the reproductive isolation of
the various year classes.

In Fig. 1 we have depicted the attractors of the
scaled system (3), as a function of c. When c in-
creases beyond c

A
(which can be shown to be

equal to e2), the equilibrium solution loses stabil-
ity due to a period-doubling (#ip) bifurcation and
a stable period-two solution x

`
x
~2 comes into

being. Here, years of x
`

are referred to as good
and years of x

~
are referred to as bad. These

epithets re#ect the viewpoint of an individual
organism: in good years the number of reproduc-
ing individuals is low [i.e. x (t!k)"x

~
] and,

consequently, the per capita reproduction is high,
whereas in bad years the number of reproducers
is high [i.e. x (t!k)"x

`
] and per capita repro-

duction is low. The period-two solution loses
stability at c"c

B
, where a period-four solution

originates. In the rest of this paper, we will con-
centrate on the period-two solution, and only
look below c

A
or above c

B
for reasons of compari-

son or to check for robustness. By convention, we
always start with the good years being the even
years and the bad years being the uneven ones.

The bifurcation diagram in Fig. 1 is identical
for all positive integer numbers k. When we look
at every k years in a delayed version (k'1),
x
`

and x
~

alternate in the same way as in an
&&ordinary'' (k"1) version when we look at every
year. In a delayed version, however, each year
(modulo k) corresponds to a di!erent subpopula-
tion or &&line'', independently coexisting in time
with the other k!1 subpopulations. Together,
these lines show a periodic pattern of period ik,
where i"2 if the subpopulations oscillate with
period two and i"4 for a period-four attractor,
and so on. The resulting true (i.e. smallest) period
may be a divisor of ik. It turns out that for small
k, the k subpopulations together show, modulo
translation, only a relatively small number of
periodic patterns (see Diekmann et al., 1999;
Diekmann & van Gils, 2000). These di!erent at-
tractors correspond to di!erent combinations of
phase of the uncoupled subpopulations.

The periodic solutions for each subpopulation
are stable when they are stable as solutions of the
ordinary di!erence equation. Then the periodic
solutions of the entire population are also stable.

Competition Between Annuals and Biennials

Suppose an annual resident competes with
a biennial invader which is inferior in the sense
that c

1
"c and c

2
"sc, with 0(s(1. What will

happen?

LOOKING EVERY YEAR

If we denote by x the density of annual young-
of-the-year (YOY) in the present year, by y

1
the

YOY of the biennial subpopulation or &&line'' that
emerged in the previous year, and by y

2
the YOY

of the biennial subpopulation that emerged in the
present year (and also 2 years before), then we can



FIG. 2. Stability boundaries of the dimorphic equilibrium
(xL , yL ) of the even-year system (7), with /(x)"exp(!x).
Bifurcation curves are solid (TC: transcritical, NS: Nei-
mark}Sacker, PD: period-doubling bifurcation). The stable
region of the equilibrium is bounded by these three curves.
Between c

A
and c

B
the annual resident is in time-modulo-2

(stroboscopic) equilibrium (cf. Fig. 1). Labels A, B and C
refer to the numerical experiments in Fig. 3.
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describe the state in the next year by the follow-
ing two-parameter family of maps F : R3PR3 :

A
x

y
1

y
2
B
@
"F A

x

y
1

y
2
B :" A

cx/(x#y
1
)

y
2

scy
1
/(x#y

1
) B , (4)

where /(x#y
1
) expresses the e!ect of the pres-

ence of both annual and biennial YOY in the
breeding spot. (It should be noted that the inter-
pretation of one of the state variables is di!erent
from the others: the second component of the
state vector is not a present number of YOY but
only serves to store information concerning YOY
in the previous year.)

LOOKING EVERY OTHER YEAR

Following the dynamics of YOY of one of the
biennial lines amounts to looking, &&stroboscopi-
cally'', every other time step. That is, we apply the
map F twice. For this purpose, we de"ne the map
G : R3PR3 as

G :"F
3
F. (5)

The reproductive isolation of the biennial sub-
populations is re#ected mathematically by the
invariance of the boundary planes y

1
,0 and

y
2
,0 for the map G. Notice also that F is a

symmetry for G, meaning that F and G commute.

Invasibility, Coexistence and Stability

We now assume that the annual resident has
settled in the period-two attractor on the bound-
ary, and introduce biennials in a good year (i.e.
even year, by convention).

To answer the invasibility question, we "rst
observe that the biennials as well as their o!-
spring, grandchildren, etc., are all born in a good
year, whereas for the annual resident good and
bad years alternate. The values of / in good
and bad years are, by necessity, such that on
(geometric) average, the lifetime per capita YOY
production by one resident YOY is equal to one.
Averaging over a period of 2 years, we can
express this as Jc2/

`
/

~
"1, where /

`
is the

density-dependent e!ect on survival and repro-
duction in the good years, and /

~
in the bad
years. The biennial clone can invade if its average
per capita YOY production exceeds one. That is,
if sc/

`
'1. By looking 4 years ahead, we can

write this as s2c2/2
`
'1, which, by using the

above-mentioned c2/
`

/
~
"1, leads to the fol-

lowing criterion for the successful invasion of one
line of the biennial:

s'S
/

~
/

`

. (6)

Similar calculations for other ages at reproduc-
tion and corresponding periodic attractors, can be
found in Diekmann et al. (1999). Notice that only
particular combinations of age at reproduction on
the one hand, and period on the other hand, are
worth studying: the greatest common divisor of
age-at-reproduction and period should be greater
than one. For example, annual invaders can never
take advantage of periodicity as they will never
be able to systematically avoid bad years.

For the choice /(x)"exp(!x), we have ana-
lytical expressions of the period-two resident
cycle (see Appendix A). This enables us to derive
a parameterization of the boundary of the subset
in (c, s) parameter space where the invasion cri-
terion (6) is satis"ed (see Appendix B). The result-
ing curve appears in Fig. 2 as the part between c

A
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and c
B

(to make sure that the resident oscillates
with period two) of the solid curve marked TC.
At the left-hand side of this curve, the annual
population is stable against the invasion of bien-
nials. As the curve is crossed, well-timed though
inferior (s(1) biennials can successfully invade
the annual population. When s is close to one, the
annuals are only slightly superior to the biennials
and consequently, for successful invasion to oc-
cur, the di!erence between good and bad years
need not be very large. As we can see in Fig. 2, it is
large enough, already close to the "rst resident
period doubling at c

A
. The more inferior the

biennials are, the higher this di!erence needs to
be, to compensate. This is re#ected in the fact that
the curve TC is decreasing.

COEXISTENCE

We now focus on the interaction of the annual
with one line of the biennial. Recall that only
biennials that reproduce in good years can in-
vade successfully. Since a period-two solution of
the resident system is equivalent to an equilib-
rium solution of the same system when we
stroboscopically look every other year, it is con-
venient to consider the map G, restricted to the
plane y

1
,0. Writing y for y

2
, we can express this

two-dimensional system, with time steps of two
years, as

A
x
yB

@
"A

c2x/(x)/ (cx/(x)#y)
scy/(cx/(x)#y) B . (7)

(The dynamics in the plane y
1
,0 is equivalent

to the dynamics in the plane y
2
,0, in the sense

that F maps orbits to orbits. Applying F twice
amounts to shifting one position along the orbit.
So when reading the following, one might imag-
ine two boundary quarter planes of the positive
cone of R3, and our description of the dynamics
pertaining to each of these invariant quarter
planes (cf. Figs 7 and 8). We conjecture that for
s(1, every orbit starting in the interior of the
positive cone of R3 will ultimately get ever closer
to the union of the boundary quarter planes.)

The even-year system (7) has a unique positive
stationary solution (xL , yL ). That is, an equilibrium
in which annuals coexist with one line of bien-
nials. For the choice /(x)"exp(!x), we even
have an analytical expression for this equilibrium
(see Appendix C). In Appendix D, we show that
(xL , yL ) is stable in R3 : low densities of the other
biennial line decrease as long as one is near the
stationary solution. By linearizing eqn (7) around
(xL , yL ), we can calculate the region in (c, s)-space
where the equilibrium exists and is stable within
the invariant plane y

1
,0 (see, e.g. Edelstein-

Keshet, 1988 and Appendix E).
Figure 2 depicts the region of stability of the

annual}biennial equilibrium. In the sickle-
shaped region, bounded by the three curves TC,
NS and PD, the equilibrium exists and is stable.
If we increase c, starting at c"c

A
, the equilib-

rium branches o! from the invariant line y,0
into the interior when the curve marked TC is
crossed. This is a transcritical bifurcation (see, e.g.
Kuznetsov, 1995). Note that this event coincides
with neutrality (i.e. equality, rather than inequal-
ity) of the invasion criterion (6). At the left-hand
side of the curve TC the annual two-cycle is not
invasible and there is no dimorphic stroboscopic
equilibrium, whereas at the right-hand side
invasion in the good years has success and leads
to stable coexistence.

In Fig. 3(a), we plotted the results of numerical
experiments which show invasion of biennials in
the good-year stroboscopic equilibrium (x

`
, 0) of

the resident, leading the system to the dimorphic
equilibrium (xL , yL ). In fact, we performed a series
of di!erent, small perturbations of (x

`
, 0) and

plotted all orbits from these experiments, to vis-
ualize the unstable manifold and the attractor.
For these perturbations and for the calculations
of the isoclines and unstable manifolds in the
"gure we used GRIND (de Boer, 1983). The
dimorphic equilibrium loses stability at higher
values of c and/or s, by a Neimark}Sacker bifur-
cation (curve NS in Fig. 2; see Kuznetsov, 1995).
Just beyond this bifurcation, a closed invariant
attracting curve (&&limit cycle'') is surrounding the
unstable stationary equilibrium point (xL , yL ), and
successful invasion leads to coexistence on this
interior attractor [Fig. 3(b)].

For extreme biennial inferiority (i.e. small
s-values, below curve TC in Fig. 2), there is no
dimorphic equilibrium. As a side remark we re-
port that in the region between the curves PD
and TC, beyond the second period-doubling of
the resident (c'c

B
), the dimorphic equilibrium



FIG. 3. Numerical experiments with system (7), showing invasion of biennials in the good years of the annual period-two
point, (x

`
, 0). Panel (a) stable dimorphic equilibrium (c"9.0); panel (b) stable invariant circle (c"9.5); panel (c) the resident

strikes back (c"10.5). For all experiments, s"0.5. Densities were plotted every other time step. Dotted curves indicate where
the movement changes sign in either the x- or the y-direction, c and P symbols indicate the direction, and ] symbols mark
stationary points.
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is a saddle point, with its unstable manifold con-
nected to the (period-four or higher) boundary
attractors of the resident population. When c in-
creases, this interval of s-values grows somewhat,
at the cost of the interval between the curves PD
and NS, where the dimorphic equilibrium is stable.

THE RESIDENT STRIKES BACK

When the biennials are only slightly inferior to
the annuals (i.e. at intermediate or large s-values),
coexistence with annuals, in a dimorphic equilib-
rium, a limit cycle or another interior attractor,
is harder to achieve for the biennials than when
they survive less or reproduce less (i.e. have
a lower s-value). This counterintuitive result is
due to the resident striking back.

Numerical experiments show that, when c and/
or s is increased further beyond the Neimark}
Sacker curve NS, the interior attractor disap-
pears by the formation of a heteroclinic tangle.
This is a trajectory structure, connecting the high
equilibrium (x
`

, 0), through the interior, with the
saddle point (x

s
, 0) on the boundary. The traject-

ory is coiled in"nitely many times extremely close
to the boundary y,0 (see, e.g. Kuznetsov, 1995).
For small c-values this happens when the invari-
ant circle collides with the stable manifold of the
saddle point (x

s
, 0).

In Fig. 4, we show an extreme blow-up of the
region around the boundary saddle point (x

s
, 0),

in three series of numerical experiments. Panel (a)
depicts the situation just before the unstable
manifold of (x

`
, 0) is tangent to the stable mani-

fold of (x
s
, 0). Panel (b) shows the tangle (i.e.

in"nitely many intersections, by necessity, of
unstable and stable manifold), and in panel (c)
we see that the intersection has just dissolved. In
the latter situation, the resident strikes back and
the unstable manifold of (x

`
, 0) coils downward

to lower and lower y-values while approaching
(x

~
, 0).

The parameter region in which the tangle
exists is extremely narrow for small c-values, but



FIG. 4. Numerical experiments with system (7), showing the formation of the heteroclinic tangle, in an extreme blow-up
around the saddle point (x

s
, 0). Panel (a) just before the tangency (c"9.7220740807); panel (b) the heteroclinic tangle

(c"9.7220740809); panel (c) just beyond the tangency (c"9.7220740811). For all experiments, s"0.5. Notation as in Fig. 3.

FIG. 5. Bifurcation curves of the even-year system (7).
Local bifurcation curves of the dimorphic equilibrium are
solid, and labelled as in Fig. 2. The heteroclinic tangle is
located at the dashed curve (HCT). Labels A to F refer to the
numerical experiments in Fig. 6.
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grows somewhat larger when c increases. After
the tangle has dissolved, a direct connection be-
tween the high equilibrium (x

`
, 0) and the low

equilibrium (x
~

, 0) remains [Fig. 3(c)]. Success-
ful invasion in the high equilibrium is followed by
extinction, and the resident is left in the low equi-
librium. This corresponds to a phase shift, result-
ing in the interchange of good and bad years in the
original system, when we look every year.

The manifold from (x
`

, 0) to (x
~

, 0) is called
a heteroclinic connection in the plane y

2
,0. In

R3 there are, by symmetry, two such connections,
one in the boundary plane y

1
,0 and one in the

boundary plane y
2
,0. The set consisting of the

period-two points (x
`

, 0) and (x
~

, 0) and the two
connecting orbits in the boundary planes is a het-
eroclinic cycle. Calculations (see Appendix F) as
well as numerical simulations show that the het-
eroclinic cycle is attracting for all parameter com-
binations for which it exists.

We have continued the heteroclinic tangencies
numerically by a bisection method in (c, s)-space.
In Fig. 5 we show an overview of our results.
Suppose we choose an s-value above the period-
doubling curve PD and a c-value below c

A
, and

then let c increase while performing experiments
of introducing some biennial invaders in the an-
nual resident population (cf. Fig. 3). We then
successively see as attractors in any of the two
invariant boundary planes: a non-invasible an-
nual resident in steady state; after the line c"c

A
has been crossed, a non-invasible annual in a pe-
riod-two attractor; after the curve TC has been
crossed, a stable annual}biennial period-two
attractor; beyond the curve NS, a dimorphic
invariant circle and/or a menagerie of more
complicated interior attractors; and, "nally after
the two almost overlapping curves of heteroclinic
tangency, denoted together by HCT have been
crossed, an &&invasible yet invincible'' annual
period-two attractor (i.e. an equilibrium of G).

To show, for completeness, that the coexist-
ence of annuals and biennials in several types of
interior attractors, and also the heteroclinic
tangle and the resident-strikes-back phenom-
enon extend to other regions of parameter space
than between c

A
and c

B
, we have included Fig. 6.

In the experiments shown in this "gure, the an-
nual resident has settled on a period-four attrac-
tor before biennials are introduced. Notice that
we plotted the values of x and y at every fourth
time step. With increasing s, we see that invasion
is possible from both &&high'' periodic points of



FIG. 6. Numerical experiments with system (7), showing invasion of biennials in both high periodic points of an annual
resident in a period-four attractor (c"13.5). Panel (a) s"0.28; (b) s"0.30; (c) s"0.32; (d) s"0.34; (e) s"0.35; (f ) s"0.38.
In panels (a), (b) and (f ) biennials were introduced in both high period-four points, in panels (c), (d) and (e) only in the lower
one. Densities were plotted every fourth year. Notation as in Fig. 3.
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the resident [shown in panels (a), (b) and (f )], and
that the interior attractor is subject to period-
doubling bifurcations [panel (b)] and has be-
come a strange attractor [panels (c), (d)] before
the heteroclinic tangency is formed [panel (e)].
The parameter region for the heteroclinic tangle
is less narrow now, and after the tangle has
dissolved, the resident strikes back by mapping
both high boundary points onto the low points
[panel (f )].
Finally, it should not pass unnoticed that an
increase in s (i.e. higher survival and/or reproduc-
tion) may make a biennial less successful in the
competition. The initial performance of the in-
vader is positively correlated with s, both in terms
of invasion success (see Fig. 5) and in terms of the
maximum density reached after successful in-
vasion (see Figs 3 and 6). Triggered by this high
invasion success, however, the resident strikes
back by changing its pace.
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INTERACTION OF THE BIENNIAL LINES

In the subset of parameter space bounded by
TC, PD and NS we have bistability: the annual
can coexist in a stable period-two orbit with
either the even or the odd biennial subpopulation
(see Appendix E). Numerical experiments suggest
that: (a) also beyond NS up to HCT we have
bistability, but now of more complicated attrac-
tors in the two boundary planes; (b) the bistabil-
ity is global; wherever we start in the interior of
R3

`
, the orbit converges to one of the two coexist-

ence boundary planes. That is, only one biennial
line can coexist with the annual population. In
support of the second point we note that solving
F(x)"x and F2(x)"x [where x"(x, y

1
, y

2
)T ;

see system (4)] yields neither an equilibrium nor
a period-two solution, in which both odd- and
even-year biennial subpopulations coexist with
the annual population. So between the curves TC
and HCT we have bistability: it will depend on
the initial conditions (in particular the phase of
the period-two resident attractor) as to which line
will stay present when both are introduced. Be-
yond the HCT curve, however, it is possible that
repeated upswings and downswings lead to
a form of coexistence over time.

In Fig. 7, we show a numerical experiment of
competition between both lines of the biennial,
introduced at low densities in an annual resident
population that has converged to the period-two
attractor. Parameter values are in the resident-
strikes-back region [using system (4), with c"10
and s"0.6] and initial conditions are such that
FIG. 7. A numerical experiment with system (4), in which bo
annual resident population in a period-two attractor. P
(10, 0.6). Initial condition: (x(0), y

1
(0), y

2
(0))"(3.67, 0.01, 0.01).

d and s symbols, respectively.
the good years are the even years. After the im-
mediate rise and subsequent fall of the even-year
subpopulation, the odd-year line starts building
up, triggered by the phase shift caused by the
even-line invasion. The rise of the odd-year line
brings the annual back to the original phase,
causing the fall of the odd-year line and creating
new possibilities for the even-year line, etc. This
leads to ever longer periods of ever lower densit-
ies in between short but substantial biennial
peaks.

A similar experiment is shown in Fig. 8, where
we introduced &&life-history noise'', by assuming
that 5% of each biennial line &&mistake'', by al-
ready reproducing after 1 year. In this situation,
the bad-year line is protected against extinction
by individuals leaking out of the current good-
year line. This leads to an in"nitely ongoing
alternation of favourable and unfavourable con-
ditions, with each line having repeatedly short
periods of high abundance. Other perturbations
of system (4), like demographic stochasticity or
environmental noise, will disturb the regularity of
this pattern. However, the phenomenon of re-
peated upswings followed by downswings due to
the resident changing its pace, is robust.

Conclusions and Discussion

The resonance of life span relative to popula-
tion-dynamic #uctuations, with the invader tak-
ing advantage of its better synchronization with
the good years, can have a profound e!ect on the
th lines of the biennial are introduced at low densities in an
anel (a) phase plot; (b) time plot. Parameters: (c, s)"
Population densities in even and in odd years are plotted with



FIG. 8. A numerical experiment with a variant of system (4), in which 5% of the biennials reproduce annually. Parameters:
(c, s)"(10, 0.6). Initial condition: (x(0), y

1
(0), y

2
(0))"(3.67, 0.0, 0.01). Notation as in Fig. 7.
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competitive success of an invading life history.
We analysed the mechanism by which successful
invasion in one attractor, with the invader popu-
lation growing to an appreciable size, can be
followed by extinction of the former invader, ulti-
mately leading the resident to a phase-shifted
attractor (or, as another possibility, a di!erent
attractor: see Diekmann et al., 1999). For the
mathematically interested reader, we have shown
that this is achieved by a heteroclinic connection
between the &&good'' and the &&bad'' periodic
points of the resident population dynamics. The
transition from resonance-mediated coexistence
to &&the resident strikes back'' (i.e. the heteroclinic
connection) is characterized by an attractor col-
lapse due to colliding invariant manifolds.

Surprisingly enough, in low-periodic attrac-
tors, &&inferior'' invaders do a better job than
invaders that survive and/or breed almost as well
as the resident. Depending on the exact di!erence
between good and bad years, certain well-timed
inferior clones can invade and coexist, whereas
well-timed better ones get ousted inevitably. In
this region of parameter space, the complete sys-
tem of annual and both biennial populations
shows bistability: one of the biennial lines is
doomed to go extinct. If evolution or environ-
mental changes will lead to less inferior biennials
in a coexisting annual}biennial population, we
expect instability of the dimorphic attractor due
to the heteroclinic tangle. The repeated occur-
rence of low population densities will then result
in the extinction of the biennial type.

If an invading biennial goes extinct, for
example due to demographic stochasticity, with-
out the resident settling into the phase-shifted
attractor, new even-year biennial mutants or im-
migrants can successfully invade again. If, after
a successful invasion, the resident does shift
phase, odd-year biennials stand a good chance of
invading successfully. This leads (also with noise
added) to a form of intermittent existence, with
odd- and even-year biennial uprises and almost
monomorphic periods in between. The attracting
heteroclinic cycle in R3 serves as a template for
such dynamics.

We emphasize that the resident-strikes-back
phenomenon is possible only when invasion ex-
ponents are multi-valued, as a result of coexisting
attractors (or a chaotic attractor with invasion
exponents of a di!erent sign; see Hofbauer et al.,
1998). This can in particular be expected when-
ever the population consists of sub-populations
that interact only weakly or not at all before
a mutant appears. That condition was clearly
ful"lled here as well as in Doebeli (1998), and in
Van Dooren & Metz (1998), who show another
case of multi-valued invasion functions in the
context of temporally structured populations.

From a biological viewpoint, the interior
attractor that is formed close to the heteroclinic
tangency, and the heteroclinic tangle itself, are
hardly relevant, "rstly, because they occur in
a relatively small region of parameter space.
Secondly, they will cause the extinction of the
invader because it repeatedly passes through
periods with very low population densities.
But between successful invasion and extinction it
will have reached higher numbers, so we could
also say that in this case the resident strikes
back by driving the invader to low population
numbers.
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Will noise restore the straightforward situation
that we observed in population-dynamical steady
state? One might argue that with enough noise
there will be no multiplicity of local attractors
and, consequently, no attractor shifts. In our
view, however, the cyclic dynamics and long peri-
ods of low mutant densities in the examples with
noise are just another manifestation of the mech-
anism that promotes exclusion of the invader.

A related reservation is that we have not taken
the mode of inheritance into account. Hammer-
stein & Selten (1994; Hammerstein, 1996) have
postulated that genetic constraints may be negli-
gible in long-term evolution, in favour of game-
theoretical approaches (see also Matessi & Di
Pasquale, 1996). Weissing (1996) extrapolated the
scope of their results to nonlinear "tness func-
tions, but at the same time stressed their limita-
tions: giving a game-theoretical characterization
of evolutionary stability seems to be a formidable
task when, among others, population composition
is polymorphic and when population dynamics
does not show long-term stable equilibria. This is
easily the case in our salmon example. Kaitala
& Getz (1995) already noted that spatial hetero-
geneity may easily lead to assortative mating and,
additionally, semelparity and the resonance phe-
nomenon have assortative mating as a side e!ect.
Consequently, when a trait relates to spatio-tem-
poral inhomogeneity while population dynamics
creates #uctuations, the need to consider genetics
may be bigger.

A locally non-invasible strategy restricts in-
vaders to playing only slightly di!erent strategies.
This concept is especially important if one as-
sumes that mutant phenotypes originate with
only slight deviations from the resident wild-type.
If mutations are limited to small steps, the phe-
nomenon of sudden invasion-driven attractor
shifts will be replaced by a resident phenotype-
driven continuation of the attractor (S. Geritz
et al., in press). However, we see no reason for
mutational steps to be necessarily small in traits
like timing of reproduction and probability of
dispersing. In our opinion, this is a strong
motivation to work with traits that allow for a
mechanistic, rather than phenomenological, in-
terpretation. For instance, it seems reasonable to
assume that salmon base the irreversible
transition to prepare for the return to fresh water
on some indicator of their physi(ologi)cal condi-
tion, like size. In combination with a stochastic
food supply, or a probabilistic description of
growth, this may then easily lead to some return-
ing at di!erent ages than others.

How realistic and how general is the resident-
strikes-back phenomenon? For real-world salmon
(e.g. Oncorhynchus gorbuscha), period-two popu-
lation dynamics have been observed in a time
series of several decades. However, this has been
attributed to a rigid two-year life cycle of the
species and the absence, for long periods, of one
of the two lines in certain areas (Neave, 1953;
Ricker, 1954; Peterman, 1977). The mechanism
behind this periodicity, and why the levels of
abundance of the lines occasionally are reverted
to is, to our knowledge, still unclear.

The dispersal example (Doebeli, 1998), from
a totally di!erent context, and the widespread
occurrence of non-equilibrium dynamics in natu-
ral ecosystems, suggest some generality. The total
set of prerequisites present in our model (strict
semelparity, intercohort competition con"ned to
the nursery, the deterministic nature of the model
at the individual level, etc.) makes it rather carica-
tural and degenerate. But the coexistence of
attractors with di!erent invasion properties is
a robust phenomenon. That is, it survives per-
turbations of the model like the addition of
a small amount of noise. Successful invasion of
one boundary attractor leading in the end to
another attractor in the same boundary is a
robust phenomenon as well.
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ably to improve the paper. The work of Sido Mylius
on this paper started at Leiden University, The Nether-
lands, and was supported by the Life Sciences Foun-
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APPENDIX A

Monomorphic Annual Period-two Solution

A period-two solution of the annual resident
system (1) is an equilibrium solution of the same
system when we look at every other time step.
That is, we are interested in the solution of
xN "f ( f (xN )) or, for /(x)"e~x,

xN "c2xN e~x6 e~cx6 %~x6 . (A.1)

We neglect the trivial solution xN "0. It is conve-
nient to express the &&high'' (good-year) period-
two point x

`
as a perturbation, with magnitude

m, of the equilibrium point x
s
, which is equal to ln c.

Then we can write x
`

as ln c#m, and eqn (A.1) as

1"c2e~(-/c`m)e~c(-/c`m)%~(-/c`m)

8 1"ce~me~(-/c`m)%~m

8 ln c"m#(ln c#m)e~m

8 ln c (1!e~m)"m(1#e~m)

Nln c"m
1#e~m
1!e~m

. (A.2)

If we substitute eqn (A.2) in x
`
"ln c#m we "nd

that

x
`
"

m (1#e~m)#m (1!e~m)
1!e~m

"

2m
1!e~m

. (A.3)



THE RESIDENT STRIKES BACK 309
The other (&&low'') period-two point, x
~

, which
alternates with x

`
, is equal to f (x

`
):

x
~
"cx

`
e~x`"cx

`
e~(-/c`m)"x

`
e~m"

2me~m
1!e~m

.

(A.4)

APPENDIX B

Biennial Invasion in Period-two Annual Resident

Using eqns (A.3) and (A.4), we can write the
ratio between good and bad years as

/
~

/
`

"

e~x`

e~x~
"exp A

2me~m
1!e~m

!

2m
1!e~mB"e~2m.

(B.1)

So we can write the biennial invasion criterion
(6) as

s'e~m (B.2)

and use eqn (A.2) to parameterize a curve in
(c, s)-space which bounds the region where the
criterion for successful invasion is satis"ed:

(c (m), s (m))"Aexp Cm
1#e~m
1!e~mD , exp[!m]B .

(B.3)

APPENDIX C

Dimorphic Annual/Biennial Solution

To "nd the dimorphic equilibrium (xL , yL ) of the
even-year system we substitute xL for x@ and x, and
yL for y@ and y in eqn (7), and divide the equations
by xL and yL , respectively, to obtain the system of
equations

G
1"c2/(xL )/ (cxL / (xL )#yL )
1"cs/(cxL /(xL )#yL ).

(C.1)

Dividing eqn (C.1b) by cs we can express the
common factor /(cxL /(xL )#yL ) in these equations
as 1/(cs). Substituting this in eqn (C.1a) we "nd
/(xL )"s/c, or xL "/~1(s/c). Substituting /(xL )"s/c
in eqn (C.1b) we obtain /(sxL #yL )"1/(cs), or
sxL #yL "/~1(1/(cs)). Using xL "/~1(s/c) to solve
this equation for yL we end up with

xL "/~1 A
s
cB ,

yL "/~1 A
1
csB!s/~1 A

s
cB .

(C.2)

For the choice /(x)"exp(!x), i.e. /~1 (x)"
!lnx, this reads as

xL "ln c!ln s,

yL "ln c#ln s!s (ln c!ln s).
(C.3)

APPENDIX D

Stability of the Dimorphic Annual/Biennial
Solution in R3

In Appendix E we discuss the stability of (xL , yL )
as an equilibrium of eqn (7). That is, in R2, within
the invariant plane y

1
,0. Here we shall verify

the transversal stability of (xL , yL ) in R3, by which
we mean that small perturbations out of the
plane y

1
,0 necessarily decay as long as the

system state is near the "xed point

A
x

y
1

y
2
B"A

xL
0

yL B (D.1)

of the map G.
From eqn (4) we deduce that G is given by

G A
x

y
1

y
2
B" A

c2x/(x#y
1
)/(cx/(x#y

1
)#y

2
)

scy
1
/(x#y

1
)

scy
2
/(cx/(x#y

1
)#y

2
) B .

(D.2)

From this expression one can read right away
that the third eigenvalue of the linearization of
G at the "xed point, i.e. the one with an eigen-
vector that has a non-trivial second component,
equals sc/(xL ). (Indeed, the y

1
component is
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multiplied by sc/(x#y
1
), a number which

equals sc/(xL ) at the "xed point.) Now recall from
Appendix C that /(xL )"s/c. Hence, sc/ (xL )"
s2(1.

APPENDIX E

Stability of the Dimorphic Solution in R2

First we write the even-year system (7) as

x@"f
1
(x, y),

y@"f
2
(x, y).

(E.1)

For the choice /(x)"exp(!x) we can express
the partial derivatives of the right-hand side in
the dimorphic equilibrium (xL , yL ) as

L f
1
(xL , yL )
Lx

"c2[/ (xL )#/(cxL /(xL )#yL )

#xL (/@(xL )/ (cxL /(xL )#yL )

#/(xL )/@(cxL /(xL )#yL )

]c(/(xL )#xL /@(xL )))]

"c2C
s
c

1
cs
#xL A

!s
c

1
cs
#

s
c
!1
cs

]cA
s
c
#xL

!s
c BBD

"1!xL (1#s (1!xL ))

"(1!xL )(1!sxL ), (E.2)

L f
1
(xL , yL )
Ly

"c2xL /(xL )/@(cxL /(xL )#yL )

"c2xL
s
c
!1
cs

"!xL , (E.3)

L f
2
(xL , yL )
Lx

"csyL /@(cxL /(xL )#yL )c (/ (xL )#xL /@(xL ))

"csyL
!1
cs

cA
s
c
#xL

!s
c B"!syL (1!x),

(E.4)
L f
2
(xL , yL )
Ly

"cs[/(cxL /(xL )#yL )#yL /@(cxL / (xL )#yL )]

"csC
1
cs
#yL

!1
cs D"1!yL (E.5)

[where we use, in each second step, that /@(x)"
!/(x) and /(cxL /(xL )#yL )"1/(cs) and /(xL )"s/c].

This results in the following Jacobian matrix of
the even-year system in (xL , yL ):

A
(1!xL ) (1!sxL ) !xL
!syL (1!xL ) 1!yL B . (E.6)

Its determinant (D) and trace (T ) are given by

D"(1!xL )(1!sxL !yL ), (E.7)

T"sxL 2!(1#s)xL !yL #2, (E.8)

which yields

D"(ln c!1)2!(ln s)2, (E.9)

T"s (ln c!ln s)2!2(ln c!1) (E.10)

if we substitute the equilibrium values for xL and
yL from eqn (C.3).

The dimorphic equilibrium (xL , yL ) loses stability
by a Neimark}Sacker bifurcation (see Kuznet-
sov, 1995) when a complex pair of eigenvalues
leaves the unit circle. This happens when the
determinant D is equal to 1. From eqn (E.9) we
see that this is the case when (ln c!1)2"
1#(ln s)2, or ln c"1$J1#(ln s)2. Restriction
to the case in which c'1 gives us a parameteriz-
ation of the Neimark}Sacker curve

(NS): ln c"1#J1#(ln s)2. (E.11)

The dimorphic equilibrium branches o! into the
interior when a real eigenvalue becomes equal to 1.
This happens when D"T!1. From eqns (E.9)
and (E.10) we see that this is the case when

(ln c!1)2!(ln s)2"s (ln c!ln s)2

!2(ln c!1)!1

8 (ln c!1)2#2(ln c!1)#1!(ln s)2

"s(ln c!ln s)2
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8 (ln c)2!(ln s)2"s (ln c!ln s)2 (E.12)

8 ln c#ln s"s (ln c!ln s)

8 ln c (1!s)"!ln s(1#s),

where we use that ln cOln s to proceed from the
third to the fourth equation. For s(1 this gives
us a parameterization of the transcritical curve

(TC): ln c"!(ln s)
1#s
1!s

. (E.13)

The dimorphic equilibrium loses stability due
to a period-doubling bifurcation when a real
eigenvalue becomes equal to !1. This happens
when D"!T!1. From eqns (E.9) and (E.10)
we see that this is the case when

(ln c!1)2!(ln s)2"2(ln c!1)!s(ln c!ln s)2!1

8 (ln c)2[1#s]!(ln c)[2(2#s ln s)]

#[4#(s!1)(ln s)2]"0. (E.14)

The solution of this quadratic equation in ln c
gives us a parameterization of the period-doubl-
ing curve

(PD): ln c"
2#s ln s$J(ln s)2!4 s(1!ln s)

1#s
.

(E.15)

We have corroborated this analysis using
CONTENT (Kuznetsov et al., 1996), a software
package for numerical bifurcation analysis.
APPENDIX F

Stability of the Heteroclinic Cycle

It can be shown [see, e.g. Hofbauer and Sig-
mund (1998), and the references therein] that
a heteroclinic cycle like the one between x

`
and

x
~

is attracting if (a) the product of the multi-
pliers corresponding to the stable manifolds (i.e.
the incoming directions to the saddle points in
the cycle, along the planes y

1
,0 and y

2
,0,

respectively) and the multipliers corresponding
to the unstable manifolds (i.e. the outgoing direc-
tions) is less than one (note that the symmetry
implies that this product is the same at x

`
and

x
~

), and (b) x
`

and x
~

are both attracting in the
transversal direction (i.e. along the x-axis).

Along the stable manifold of both period-two
points x

`
and x

~
, a biennial line has multiplier

sc/
~
(1 (F.1)

and along the unstable manifolds a biennial line
has multiplier

sc/
`
'1. (F.2)

The product equals

s2c2/
`

/
~
"s2(1. (F.3)

(Recall that c2/
`
/

~
"1 since the average per

capita YOY production is assumed to be one.)
This shows that in the region c

A
(c(c

B
, where

the period-two cycle x
`

x
~

is attracting along the
x-axis, the heteroclinic cycle between x

`
and

x
~

is locally attracting.
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