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I extend Dawkins’ Battle of the Sexes by introducing a population with mating
structure. Previous models of the battle of the sexes specify a dynamic system
on the basis of the payoff matrices of the evolutionary population-game. Here I
model the sex war by expressing the costs of raising offspring and performing
a prolonged courtship in terms of a time delay during which individuals cannot
mate anew. Only after the delay has occurred, an individual (and its offspring)
appears on the mating market again. This gives rise to a pair-formation sub-
model, and a system of delay-differential equations describing the dynamics of
the game. The dynamics of this model are qualitatively different from those
of the ‘homogeneous’ models of the battle of the sexes. Evolutionary predic-
tions of a game-theoretical model, in which the costs and benefits of a strategy
are summarized by a single entry in a payoff matrix, may be quite different
from a model that explicitly considers the mechanisms controlling mating in a
structured population.

Introduction and historical background

The term “Battle of the Sexes” was introduced by Richard Dawkins in The Selfish
Gene (1976). Currently, the phrase refers to a specific conflict described in his
book: an evolutionary game between males and females about the costs of
raising offspring. The conflict is rooted in Trivers’ (1972) theory of parental
investment and sexual selection, and has the following rationale.

In many species, raising offspring requires a considerable investment by
the parents. One parent may find it tempting to reduce its investment, at the
expense of the other. Often one of the sexes, typically the female, makes a
larger investment in the offspring. The male is then not as committed to the
children as the female and is tempted to desert shortly after the mating, leaving
the female with the task of raising the offspring. A female could prevent this
by choosing a faithful partner, perhaps testing his fidelity by insisting on a long
engagement period.

1 Present address: Theoretical Biology, University of Groningen, P.O. Box 14, NL – 9750 AA
Haren, The Netherlands. E-mail: mylius@biol.rug.nl
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Dawkins used the following caricature of the possible types of behavioral
strategies to help analyze this conflict. Males can be either (1) helping or (2) non-
helping, and females can be (1) choosy or (2) non-choosy. (Actually, Dawkins and
many others used the terms “philanderous” or “faithful” for males, and “coy”
or “fast” for females.) Choosy females insist that their partner performs a
prolonged courtship before mating; non-choosy females do not. Helping males
help the female in raising the offspring, and they court if the (choosy) female
insists; non-helping males do not court, and leave immediately after conception.
As a result, choosy females do not mate with non-helping males.

Dawkins constructed a game-theory model of this scenario (sensu Maynard
Smith & Price 1973), assigning fixed numerical values to the various costs and
benefits. These can be represented by different payoff matrices for males and
females. An asymmetrical conflict (Maynard Smith 1982) corresponds to the
bimatrix games of classical game theory; there are two separate populations,
males and females, with different strategy sets and payoff functions.

Dawkins’ analysis leads to a totally mixed equilibrium of the game, at which
all types of players are present and it does not pay any player to deviate from
the equilibrium strategy. He claimed that this is an evolutionarily stable strat-
egy (ESS). Schuster & Sigmund (1981) refuted this on the grounds that it lacks
certain stability properties. The male and female payoffs for a “rare mutant”
strategy in a resident population at the Dawkins equilibrium are independent
of the frequencies of the mutants. Hence, any mutant strategy is an alternative
best reply to the mixed equilibrium, which therefore satisfies the first (Nash
equilibrium) condition of the definition of an ESS (see Maynard Smith 1982).
But if the mutant males and females are either more faithful and more choosy
or less faithful and less choosy, then the mutants fare better against themselves
than do the residents against the mutants. Hence, the mixed equilibrium point
does not satisfy the second condition for an ESS. Selten (1980) has shown that
for asymmetrical games in general, only pure strategies can be ESS’s. The bat-
tle of the sexes is sometimes referred to as one of the most simple biological
games without an ESS (Maynard Smith & Hofbauer 1987).

Dynamic models

Another way to illustrate the instability of the mixed equilibrium is from the
point of view of a dynamic system. Because the payoffs for the male strategies
depend only on the state of the female population, and the payoffs of the female
strategies depend only on the male population, there is no penalty for a one-
sided deviation from the equilibrium frequencies. If a fluctuation increases
the proportion of helping males, the payoff for each male strategy stays the
same. But in this situation, it pays the females to become less choosy; then,
non-helping males are at an advantage. But if the frequency of non-helping
males is high, choosy females fare better; with a lot of choosy females around,
helping males increase, and we are back at the beginning. However, there is
no guarantee of a return to equilibrium, and there is a tendency to oscillatory
behavior, for which the static game-theory approach is not sufficient.

Taylor & Jonker (1978) introduced a class of ordinary differential equations,
known as game-dynamic equations, to model the dynamics of games. They
assumed that the rate of increase of each type of player is equal to the dif-
ference between its expected payoff and the average payoff. For the battle of
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Figure 1: Phase portrait of the system from Schuster & Sigmund (1981). The
fraction of helping males, x, is plotted on the abscissa, and the fraction of
choosy females, y , on the ordinate.

the sexes, using Dawkins’ (1976) payoff matrices, Schuster & Sigmund (1981)
derived corresponding dynamic equations. The solutions of these are neutrally
stable oscillations around the Nash equilibrium, which is the time average of all
these orbits (see Fig. 1). This behavior is similar to that of models of predator–
prey dynamics of Lotka–Volterra type.

Especially for games without an ESS, small modifications of the underlying
dynamics can change the qualitative behavior considerably. With somewhat
different equations in continuous time, the system converges to an asymptoti-
cally stable equilibrium (Maynard Smith 1982; Hofbauer & Sigmund 1988). With
discrete-time game dynamics, however, the equilibrium is always unstable (Es-
hel & Akin 1983), in agreement with Maynard Smith’s (1982) remark that any
time delay destabilizes the equilibrium solution.

Note also that in the game-dynamic equations, just as in the static game-
theory approach of Dawkins, “like begets like”: male offspring inherit the strat-
egy of the father, and female offspring inherit the strategy of the mother. All
these models assume asexual reproduction, an awkward assumption for a bio-
logical war between the sexes. Incorporating diploid sexual inheritance in the
Schuster–Sigmund model (Bomze et al. 1983) still gives rise to periodic oscilla-
tions. Converting the game dynamics for the diploid model from continuous
time (Bomze et al. 1983) to discrete time (Maynard Smith & Hofbauer 1987)
changes the qualitative behavior from neutrally stable oscillations to an un-
stable equilibrium surrounded by a limit cycle (see also Maynard Smith 1982,
appendix J).

A model with pair formation

One of the (often implicit) assumptions in game-theory models is that all con-
sequences of the behavioral strategies can be expressed in the payoffs. The
fitness gain for an individual playing a certain strategy is then equal to the ex-
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pected payoff for playing that strategy in the population. In many cases this
assumption is questionable. Our modification of the sex-war game expresses
the costs of raising offspring and performing courtship by means of a time de-
lay for the corresponding individuals in a pair-formation model. We stay close
to the model of Schuster & Sigmund (1981), the first and simplest dynamic
version of the game.

Formulation of the model

Suppose that raising offspring takes τr time units, and performing courtship
plus raising offspring takes τcr time units (0 < τr ≤ τcr). The time needed
for raising offspring does not depend on whether the male helps the female.
We assume that when the female does the raising by herself, she produces
κ1 male offspring and also κ1 female offspring, whereas when the male helps
her, κ2 offspring of each sex are produced (0 < κ1 ≤ κ2). The difference between
κ1 and κ2 is not in the original game (Dawkins 1976) and its descendants, but
it is a natural extension.

Define ui(t) and vj(t) to be the densities at time t of unmated males and
females following strategies i and j, respectively. The density of all unmated
males is u(t), where u(t) := u1(t)+u2(t), and the density of all free females
is v(t), where v(t) := v1(t) + v2(t). Furthermore, wij(t, τ)dτ is either the
density of type-i males mated with type-j females during a time interval of
length dτ around τ time units before time t, or the density of (the same) type-
j females mated with (the same) type-i males. Notice that, for (i, j) = (1,1),
0 < τ < τcr, and for (i, j) ∈ {(1,2), (2,2)}, 0 < τ < τr. Additionally, w22(t, τ)
denotes only the density of type-2 females mated with type-2 males because
these males are always free.

We assume that mating between a type-i male and a type-j female occurs
at a rate mij = αij uivj/(u+ v). Here, αij is a mating rate constant, equal to
zero for a non-helping/choosy mating and positive for all other combinations.
For all but the non-helping/choosy mating,

mij(t) := α
ui(t)vj(t)
u(t)+ v(t) , ij ∈ {11,12,22} . (1)

It is only after raising the offspring that the individuals are free to mate again,
along with the offspring.

For example, at time t, free males of type 1 disappear at a rate m11(t) by
mating with females of type 1; free males reappear at a ratew11(t, τcr) following
matings of this type that occurred at time t − τcr. Assuming that “like begets
like” and that individuals are mature immediately after raising, we can account
for the male type-1 offspring by multiplying w11(t, τcr) by (1+ κ2).

Assuming a constant mortality rate µ, the following partial differential equa-
tions describe the densities of mated individuals:

∂w11(t, τ)
∂t

= − ∂w11(t, τ)
∂τ

− µw11(t, τ) , 0 < τ < τcr

∂w12(t, τ)
∂t

= − ∂w12(t, τ)
∂τ

− µw12(t, τ) , 0 < τ < τr

∂w22(t, τ)
∂t

= − ∂w22(t, τ)
∂τ

− µw22(t, τ) , 0 < τ < τr ,

(2)
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with the side conditions that

wij(t,0) = mij(t) , ij ∈ {11,12,22} . (3)

Considering all possible combinations of matings, together with reproduc-
tion and mortality, the following system of ordinary differential equations de-
scribes the densities of free individuals:

du1(t)
dt

= −m11(t)+ (1+ κ2)w11(t, τcr)
−m12(t)+ (1+ κ2)w12(t, τr) − µu1(t)

du2(t)
dt

= κ1w22(t, τr) − µu2(t)

dv1(t)
dt

= −m11(t)+ (1+ κ2)w11(t, τcr)− µ v1(t)

dv2(t)
dt

= −m12(t)+ (1+ κ2)w12(t, τr)
−m22(t)+ (1+ κ1)w22(t, τr) − µ v2(t) .

(4)

The fractions of helping males and choosy females in the population at
time t, x(t) and y(t) respectively, are

x(t) = u1(t)+W11(t)+W12(t)
M(t)

and y(t) = v1(t)+W11(t)
F(t)

, (5)

where the densities of mated individuals, either males or females (except W22,
which represents only females) at time t, are

Wij(t) :=
∫ τ?

0
wij(t, τ)dτ , ij ∈ {11,12,22} (6)

— here and below, τ? = τcr if (ij) = (11) and τ? = τr if (ij) ∈ {(12), (22)} —
and the total densities of males and females, respectively, are

M(t) := u1(t)+u2(t)+W11(t)+W12(t)
F(t) := v1(t)+ v2(t)+W11(t)+W12(t)+W22(t) .

(7)

The appendix shows how the manifold on which male and female densities
are equal is invariant and attracting. Thus, if the total densities of males and
females are initially equal, they will remain equal. Finally, notice that there is
no density dependence in the model; in the long run the values of the param-
eters (notably α and µ) produce an exponentially growing or an exponentially
decaying population.

An equivalent model with delay-differential equations

We can easily convert the system of equations (2)–(4) into an equivalent
system of delay-differential equations. Defining

u1w(t) := W11(t)+W12(t)
v1w(t) := W11(t) (8)

v2w(t) := W12(t)+W22(t) ,
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for mated individuals of type-1 males and for type-1 and type-2 females, re-
spectively, and adding these three variables to equations (4), we obtain

du1(t)
dt

= −m11(t)+ (1+ κ2)n11(t, τcr)
−m12(t)+ (1+ κ2)n12(t, τr) − µu1(t)

du2(t)
dt

= κ1n22(t, τr) − µu2(t)

dv1(t)
dt

= −m11(t)+ (1+ κ2)n11(t, τcr) − µ v1(t)

dv2(t)
dt

= −m12(t)+ (1+ κ2)n12(t, τr)
−m22(t)+ (1+ κ1)n22(t, τr) − µ v2(t)

du1w(t)
dt

= m11(t)−n11(t, τcr)+m12(t)−n12(t, τr)− µu1w(t)

dv1w(t)
dt

= m11(t)−n11(t, τcr) − µ v1w(t)

dv2w(t)
dt

= m12(t)−n12(t, τr)+m22(t)−n22(t, τr) − µ v2w(t) ,

(9)

where
nij(t, τ?) := mij(t − τ?) e−µτ? (10)

is the mating rate between type-i males and type-j females at time t − τ?,
multiplied by the survival probability over the time interval (t − τ?, t).

We can integrate this system of seven delay-differential equations numeri-
cally using the Solver program (Blythe et al. 1990a). The three mating rates
mij(t) are stored as history variables (Blythe et al. 1990b) in the Solver equa-
tions. Initial conditions of the system are set by entering (x0, y0) and the to-
tal population size. The distribution over free and mated individuals at and
before t = 0 is calculated by assuming that 99 percent of the individuals are
mated. Total numbers of males and females are equal. Unless stated otherwise,
α = 1 and µ = 0.1.

Notice that the time-delayed system (9) cannot keep track of the types of the
partners of the mated individuals. From the definitions (8) there is sufficient
information to calculate x and y using equations (5). With respect to x and y
the systems (2)–(4) and (9) are equivalent, as long as the initial conditions are
equivalent.

Results

In this section we discuss the qualitative behavior of the model in (x,y)-space,
as we are interested mainly in the dynamics of the frequencies of the male and
female behavioral strategies.

At the corners of Σ2 :=
{
(x,y) | 0 ≤ x,y ≤ 1

}
are always four trivial equi-

libria, where the variables x or y are equal to 0 or 1. It is laborious but straight-
forward to show analytically that on the boundary of Σ2 the following holds.
If x = 0, then ẏ < 0. For x = 1, ẏ < 0 if τcr > τr, and ẏ = 0 if τcr = τr. If
y = 1, then ẋ > 0. On the border y = 0 and in the interior, the situation is
more complicated. From here on we discuss the qualitative behavior of x and y
as it appears from numerical simulations of the model with delay-differential
equations (9).
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Figure 2: Phase portrait of system (9), with (τr, τcr) = (10,10.5) and (κ1, κ2) =
(1,2). Again, x is the fraction of helping males, and y is the fraction of choosy
females in the population. For explanation, see the text.

The simulations show that the system can have at least two non-trivial equi-
libria. We employ, as typical, the parameter values (τr, τcr) = (10,10.5) and
(κ1, κ2) = (1,2). Figure 2 shows that on the border y = 0 is an asymptoti-
cally stable equilibrium at (x,y) ≈ (0.28,0), connected through the ‘unstable
manifold’ of an interior ‘saddle point’ at (0.34,0.01) with a (totally mixed) sta-
ble interior equilibrium at (0.92,0.42). All trajectories in this figure started
in the upper left corner. The irregular shape of the orbits is due to imperfect
initialization of the system.

Note that the dynamic systems (2)–(4) and (9) have infinite dimensions. Here,
the dynamics of x and y are a two-dimensional projection of these systems,
which strictly speaking rules out discussion of saddle points, stable and unsta-
ble manifolds, separatrices, etc. Nevertheless, it is convenient to continue to
do so. But the fact that the behavior in (x,y)-space is reminiscent of a two-
dimensional system suggests that this system can be simplified considerably.

The stable manifold of the saddle separates the basins of attraction of the
interior and the boundary equilibrium. The basin of attraction of the inte-
rior equilibrium lies inside the interior of Σ2 and is surrounded by that of the
boundary equilibrium, except that they both touch the corner (x,y) = (0,1).
The interior basin of attraction almost touches the boundary x = 1, where the
boundary basin is extremely narrow. The system can make large excursions
through (x,y)-space before settling down. An example is the uppermost curve
in Fig. 2, which starts at (0.1,0.997) and converges to the interior equilibrium.
Trajectories starting with y even closer to 1 follow approximately the same
route, but on the boundary side of the stable manifold of the saddle, finally
converging to the boundary equilibrium.

The effect of varying the courtship period (τcr−τr) is shown in Fig. 3. Again,
all trajectories start in the upper left corner, except for some curves in panel A,
where the courtship period is zero. For a very short courtship period, the pro-
portion of helping males in the interior equilibrium is almost 1 (see panel B).
Convergence to the interior equilibrium is, in this case, oscillatory: curves re-
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Figure 3: Phase portraits of system (9), with varying courtship durations and
τr = 10, and (κ1, κ2) = (1,2). The courtship duration is (A) zero: τcr = 10;
(B) very short: τcr = 10.05; (C) long: τcr = 11.2; (D) slightly longer: τcr = 11.25.
Again, x is the fraction of helping males, andy is the fraction of choosy females
in the population.
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peatedly pass extremely close to the boundary x = 1 while approaching the
equilibrium. When τr = τcr (no courtship: panel A), the interior equilibrium is
absorbed by the boundary x = 1, which turns into a line of equilibria. Above
y ≈ 0.52, the boundary is attracting in the x-direction; below this value it is
repelling. Non-helping males are able to invade if the proportion of choosy
females is smaller than 0.52, but after an initial increase they decrease in fre-
quency again because of the number of choosy females increases. The system
settles on a boundary point with only helping males, but with a higher propor-
tion of choosy females than before; from there non-helping males are not able
to invade again.

Increasing the courtship period (panels B and C) decreases the frequencies
of helping males and choosy females in the interior equilibrium, and the basin
of attraction for the interior equilibrium shrinks until the equilibrium hits the
saddle point and the two disappear near τcr ≈ 11.22. For higher τcr values, the
boundary equilibrium is the only non-trivial one, and all trajectories from the
interior of Σ2 converge to it (panel D).

The effect of a decrease in τr is similar to an increase in τcr, except that the
boundary equilibrium moves to higher x values, whereas its location is inde-
pendent of τcr. At τr = τcr = 10.5, the boundary equilibrium is located about
where x ≈ 0.26. At τr ≈ 9.42 the interior equilibrium and the saddle annihi-
late each other and only the boundary equilibrium remains. With a decrease
in τr, the boundary equilibrium moves to the right until it coincides with (1,0)
at τr ≈ 2.8.

Varying κ1 yields approximately the same scenario as varying τr, except
that the location of the boundary equilibrium now spans the whole range of
0 ≤ x ≤ 1. When κ1 ≈ 1.08 and higher, the boundary equilibrium is located
at (0,0); when κ1 ≈ 0.47 and lower, at (1,0); and for κ1 between these val-
ues, a non-trivial boundary equilibrium exists. Additionally, decreasing κ1 lets
the y value of the interior equilibrium drop (!), whereas its x value remains
almost constant. Here, the disappearance of the interior equilibrium and the
saddle point takes place at higher values of x. The interior equilibrium emerges
again through a ‘saddle–node bifurcation’ where κ1 ≈ 1.19. When κ1 ≈ 0.55,
the interior equilibrium and the saddle seem to annihilate each other at the
boundary equilibrium, which remains. Varying κ2 amounts to the same thing
as varying κ1; it is the difference between the two that counts.

Choosy females can persist (and an interior equilibrium point exists) if the
advantage of both parents’ raising the offspring together is neither too small
nor too large and the length of the courtship period is not too large relative to
the time needed for raising the offspring. The window of τ? values for a totally
mixed equilibrium point to exist is wider for intermediate differences between
κ1 and κ2, and vice versa. Outside this cone of values for τr, τcr, κ1 and κ2 the
population consists of exclusively non-choosy females. Even then, there can be
a stable polymorphism in male strategies, depending on the exact parameter
values.

Discussion

An important difference between the game-dynamic model and the present
models is seen in the behavior which arises when there are only non-helping
males around (at x = 0). In this case, choosy females do not mate, and they
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cannot reproduce. Without reproduction, their density must decrease at the
mortality rate µ. Non-choosy females have positive growth terms because of
matings with non-helping males. Consequently, the proportion of choosy fe-
males decreases. In the game-dynamic model, however, the joint representation
of reproduction and parental investment in one payoff value gives the choosy
females a zero growth rate and the non-choosy females a negative growth rate.
This causes the proportion of choosy females to increase (and, if modeled, the
total population size to decrease).

Another interesting difference is the existence of the boundary equilibrium
(at y = 0). In a population of only non-choosy females, helping and non-
helping males can coexist because of the difference in their reproductive out-
puts. This is not true in the game-dynamic models. Helping males can invade a
non-helping population if they raise sufficiently more offspring by helping the
females, and non-helping males can invade a helping population provided that
the reproductive advantage for helping males is not too large and the period
needed for raising the offspring is sufficiently long. This observation shows
that the raising period assists the helping males to keep females out of the
mating market and unable to mate with non-helping males.

The local behavior near the interior equilibrium point resembles the global
behavior of the game-dynamic model more closely: clockwise convergence and
oscillations. Both can be explained by the argument given in the section “Dy-
namic Models”, clarifying the lack of stability of the mixed-equilibrium point:
with more helping males around, non-choosy females do better; with more non-
choosy females, non-helping males are at an advantage, and so on.

If there is an interior equilibrium for the mating-delay models, it is a stable
one, weakening Maynard Smith’s (1982) claim, that any time delay is destabiliz-
ing. Without a gain in reproductive output for a helping male (κ1 < κ2), there is
no interior equilibrium; apparently, this condition more than compensates for
destabilization due to time delays.

There are difficulties in formulating a more mechanistic model of the game,
while keeping the model close to the Schuster–Sigmund model. This form main-
tains a necessary equality between the rates of mating of males and females.
However, the Schuster–Sigmund model involves only quadratic terms of the
form uivj . The form used here is convenient, but does not have a clear bi-
ological derivation; such a derivation would be a useful addition to dynamic
models.

The densities acting as state variables in system (2)–(4) cannot simply be
scaled to frequencies. In the work of Taylor & Jonker (1978), Schuster & Sig-
mund (1981), and Hofbauer & Sigmund (1988), such a scaling of the variables
is equivalent to a change in time scale, and only the information about the total
population size is lost. For our system with delays, the densities are necessary
in the delay terms, while a change in time scale also affects the time delay.

In the model presented here, paired individuals die individually, together
with their would-be offspring (see eqs. 2, 4). The widowed partner, provided it
stays alive, continues to raise its offspring (possibly courting a dead body). More
detailed ways of accounting for the mortality in pairs lead to more complicated
equations, but the global behavior of the model remains unaltered.

A striking drawback of this model (and those of Schuster & Sigmund 1981;
Maynard Smith 1982; and Eshel & Akin 1983) is that it discusses the dynamics
of the battle of the sexes without taking sexual inheritance into account, thus
implying that the organisms are haploid. An improvement would be to treat a
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diploid organism, for example, with two autosomal loci, one locus of which is
expressed only in males and the other expressed only in females (as in Bomze
et al. 1983 and Maynard Smith & Hofbauer 1987).
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Appendix

Male and female densities stay equal

The manifold on which male and female densities are equal is attracting, that
is,

lim
t→∞

[M(t)− F(t)] = 0 .

Using the definitions in (4) and (7), we have

d
dt
[M(t)− F(t)] = d

dt
[u1(t)+u2(t)+W11(t)+W12(t)]

− d
dt
[v1(t)+ v2(t)+W11(t)+W12(t)+W22(t)]

= − µ [u1(t)+u2(t)]+ µ [v1(t)+ v2(t)]

+m22(t)−w22(t, τr)−
d
dt
W22(t) .

Because
d
dt
Wij(t) = −wij(t, τ?)+mij(t)− µWij(t) ,

this is equal to

− µ [u1(t)+u2(t)]+ µ [v1(t)+ v2(t)]+ µW22(t) .

Adding and subtracting −µ [W11(t)+W12(t)] leads to

d
dt
[M(t)− F(t)] = −µ [M(t)− F(t)] ,

and, therefore,
M(t)− F(t) = [M(0)− F(0)] e−µt .

This proves that the manifold of equal male and female densities is invariant
and, furthermore, that after disturbance the system returns to this manifold.
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