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In the various dynamic models of Dawkins’ Battle of the Sexes, payoff
matrices serve as the basic ingredients for the specification of a game-
dynamic model. Here I model the sex war mechanistically, by expressing
the costs of raising the offspring and performing a prolonged courtship
via a time delay for the corresponding individuals, instead of via payoff
matrices. During such a time delay an individual is not able to have new
matings. Only after the delay has occurred, an individual (and its offspring)
appears on the mating market again. From these assumptions I derive a
pair-formation submodel, and a system of delay-differential equations de-
scribing the dynamics of the game. By a time-scale argument, I obtain an
approximation of this system by means of a much simpler system of or-
dinary differential equations. Analysis of this simplified system shows that
the model can give rise to two non-trivial asymptotically stable equilibrium
points: an interior equilibrium where both female strategies and both male
strategies are present, and a boundary equilibrium where only one of the
female strategies and both male strategies are present. This behaviour is
qualitatively different from that of models of the battle of the sexes for-
mulated in the traditional framework of game-dynamic equations. In other
words, the addition of a most elementary further assumption about indi-
vidual life history fundamentally changes the model predictions. These res-
ults show that in analysing evolutionary games one should pay careful at-
tention to the specific mechanisms involved in the conflict. In general, I ad-
vocate deriving simple models for evolutionary games, starting from more
complex, mechanistic building blocks. The wide-spread method of model-
ling games at a high phenomenological level, through payoff matrices, can
be misleading.

1. Introduction

One of the implicit assumptions in evolutionary game-theory models (Maynard
Smith & Price, 1973; Maynard Smith, 1982), such as the Battle of the Sexes
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(Dawkins, 1976), is that the immediate fitness consequences of playing a cer-
tain strategy can be expressed in simple numbers: the payoffs. In other words,
when a behavioural strategy (or life-history trait value) is played against another
strategy, or a mixture of strategies, the expected fitness costs and benefits as-
sociated with that particular strategy in those particular circumstances can be
calculated by summing up additive fitness contributions, yielding a fixed nu-
merical value. The average overall fitness contribution to an individual playing
a specific strategy in a population with a given strategy composition is then
equal to the average of the payoffs of simple encounters.

In this paper, I will use Dawkins’ sex war as a vehicle to argue that the
assumption that the costs and benefits can be translated into simple additive
payoff values is often questionable.

1.1. The Battle of the Sexes

The term “Battle of the Sexes” was introduced into biology by Richard Daw-
kins in The Selfish Gene (1976). In biology, the phrase currently refers to a
specific conflict described in his book: an evolutionary game between males
and females about the costs of raising offspring. (Sociology and economics
have their own versions of the game.) The conflict is rooted in Trivers’ (1972)
theory of parental investment and sexual selection, and has the following ra-
tionale: In many species, raising offspring requires a considerable investment
by the parents. One parent may find it tempting to reduce its investment, at the
expense of the other. Often one of the sexes, typically the female, cannot avoid
making a larger investment in the offspring. Then the male is not as committed
to the children as the female and is tempted to desert shortly after the mating,
leaving the female with the task of raising the offspring. A female could pre-
vent this by choosing a faithful partner, and testing his fidelity by insisting on
a long engagement period.

Dawkins used the following caricature of the possible types of behavioural
strategies to help analyse this conflict. Males can be either helpful or non-
helpful, and females can be choosy or non-choosy. (Actually, Dawkins and many
authors after him used the terms “philanderous” and “faithful” for males, and
“coy” and “fast” for females.) Choosy females insist that their partners per-
form a prolonged courtship before mating; non-choosy females do not. Helpful
males help the female in raising the offspring, and they court if the (choosy)
female insists; non-helpful males do not court, and leave immediately after
conception. As a result, choosy females do not mate with non-helpful males.

Dawkins constructed a game-theory model of this scenario (sensu Maynard
Smith & Price 1973), assigning fixed numerical values to the various costs and
benefits. He assumed that the beneficial value of a child is, say, a fitness units
per parent, the total cost of raising the offspring is b, and the cost of wasting
time by performing the prolonged courtship is c per parent, where the default
values are a = 15, b = 20 and c = 3. Then the payoff in a helpful/choosy
mating will be a − (b/2) − c = 2 for both parents, whereas in a helpful/non-
choosy mating, the payoff will be a−(b/2) = 5, because they skip the courtship.
From a non-helpful/non-choosy mating, the male will gain a fitness units, and
the female will lose: a−b = −5. This game can be represented by the following
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pair of payoff matrices A and B, for males and females respectively:

A :=
(
a− b/2− c a− b/2
0 a

)
=

(
2 5
0 15

)

B :=
(
a− b/2− c 0
a− b/2 a− b

)
=

(
2 0
5 −5

)
.

(1)

This is an example of an asymmetrical conflict (Maynard Smith, 1982), and
corresponds to the bimatrix games of classical game theory; there are two sep-
arate populations, males and females, with different strategy sets and payoff
functions.

1.1.1. Static analysis

Writingx1 for the frequency of helpful males in the population, x2 (= 1−x1)
for the frequency of non-helpful males, and y1 and y2 (= 1−y1), respectively
for the frequencies of choosy and non-choosy females, I shall describe the state
of the population by (x,y) := (x1, y1), i.e. a point in the unit square Σ2 =
{(x,y) ∈ R2 | 0 ≤ x,y ≤ 1}. Then the expected payoff for a helpful male is
(a−b/2−c)y1+(a−b/2)y2 and for a non-helpful male ay2. These payoffs are
equal if, and only if, y is equal to y∗ := b/(2(a−c)) = 5/6. The payoffs for the
female strategies are equal if and only if x = x∗ := (a− b)/(a− b − c) = 5/8.
Consequently, (x∗, y∗) is a totally mixed equilibrium point of the game; all
types of players are present and it does not pay for any player to deviate from
the equilibrium strategy.

Dawkins claimed that this totally mixed equilibrium point is an evolutionar-
ily stable strategy (ESS). Schuster & Sigmund (1981) refuted this on the grounds
that it lacks certain stability properties. The male and female payoffs for a ‘rare
mutant’ strategy in a resident population at the Dawkins equilibrium are inde-
pendent of the frequencies of the mutants. Hence, any mutant strategy is an al-
ternative best reply to the mixed equilibrium, which therefore satisfies the first
(Nash equilibrium) condition of the definition of an ESS (see Maynard Smith,
1982). But if the mutant males and females are either more helpful and more
choosy or less helpful and less choosy, then the mutants fare better against
themselves than do the residents against the mutants. Hence, the mixed equi-
librium point does not satisfy the second condition for an ESS. Selten (1980)
has shown that for asymmetrical games in general, only pure strategies can
be ESS’s. Therefore, the battle of the sexes is sometimes referred to as one of
the most simple biological games without an ESS (Maynard Smith & Hofbauer,
1987).

1.1.2. Dynamic analysis

Another way to illustrate the instability of the mixed equilibrium is to formu-
late the model as a dynamic system. Because the payoffs for the male strategies
depend only on the state of the female population, and the payoffs of the fe-
male strategies depend only on the male population, there is no penalty for
a one-sided deviation from the equilibrium frequencies. If a fluctuation in-
creases the proportion of helpful males, the payoff for each male strategy stays
the same. But in this situation it pays for the females to become less choosy,
which in turn allows non-helpful males to be at an advantage. But if the fre-
quency of non-helpful males is higher, choosy females fare better; with a lot of
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Fig. 1: Phase portrait of system (3), from Schuster & Sigmund (1981). Direction
of flow is indicated with I arrowheads and equilibrium points are marked with
� symbols.

choosy females around, helpful males increase, and we are back at the begin-
ning. However, there is no guarantee of a return to equilibrium, and there is a
tendency to oscillatory behaviour, for which the static game-theory approach
is not sufficient.

Taylor & Jonker (1978) introduced a class of ordinary differential equations,
known as game-dynamic equations, to model the dynamics of games. They
assumed that the per capita rate of increase of each type of player, say ẋi/xi
for the male type i, is equal to the difference between its expected payoff, (Ay)i,
and the average payoff, i.e. the inner product xTAy, where x and y are the vectors
of frequencies of male and female strategies, respectively. For an asymmetric
conflict with two strategies for each type of player, this leads to the ordinary
differential equation (ode) system

dxi
dt

= xi
(
(Ay)i − xTAy

)
, i ∈ {1,2}

dyj
dt

= yj
(
(Bx)j − yTBx

)
, j ∈ {1,2}

(2)

on the invariant space Σ2. For the battle of the sexes Schuster & Sigmund (1981)
analysed the equations

dx
dt

= x (1− x) (−10+ 12y)

dy
dt

= y (1−y) (5− 8x) ,
(3)

derived by substituting Dawkins’ matricesA and B from (1) into (2), where again
x is the frequency of helpful males and y is the frequency of choosy females.
The solutions of this ode system are neutrally stable oscillations around the
mixed equilibrium point (x∗, y∗), and this equilibrium point equals the time
average of all these orbits (see Fig. 1). This behaviour is similar to that of
models of predator–prey dynamics of Lotka–Volterra type.

Especially for games without an ESS, small modifications of the underlying
dynamics can change the qualitative behaviour considerably. In continuous
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time the system can converge to an asymptotically stable equilibrium (Maynard
Smith, 1982; Hofbauer & Sigmund, 1998). With discrete-time game dynamics,
however, the equilibrium is always unstable [Eshel & Akin 1983, in agreement
with Maynard Smith’s (1982) remark that any time delay destabilises the equi-
librium solution].

Note also that in the game-dynamic equations, just as in the static game-
theory approach of Dawkins, “like begets like”: male offspring inherit the strat-
egy of the father, and female offspring inherit the strategy of the mother. All
these models assume asexual reproduction, and this is of course hard to de-
fend in the context of a biological war between the sexes. Incorporating dip-
loid sexual inheritance in the Schuster–Sigmund model (Bomze et al., 1983)
still gives rise to periodic oscillations. Converting the game dynamics for the
diploid model from continuous time (Bomze et al., 1983) to discrete time (May-
nard Smith & Hofbauer, 1987) changes the qualitative behaviour from neutrally
stable oscillations to an unstable equilibrium surrounded by a limit cycle (see
also Maynard Smith, 1982, Appendix J).

So the different dynamic models for the battle of the sexes give rise to a vari-
ety of dynamics, always with an interior equilibrium, and often characterised
by oscillatory behaviour.

2. A model with pair formation

The present modification of the sex-war game expresses the costs of raising
offspring and performing a prolonged courtship by means of a time delay for
the corresponding individuals, in a pair-formation submodel. During such a
time delay courtship takes place and offspring is raised, and an individual is
not able to have new matings. Only after the delay an individual appears on the
mating market again, together with its offspring. A preliminary version of this
pair-formation model can be found in Kumm et al. (1996).

First I will sketch, textually and graphically, the complete pair-formation
model and the resulting dynamic system corresponding to the game. This
translates directly into a delay-differential equation (dde) system, given in Ap-
pendix A. (See also Nisbet 1996 for an overview of the use of dde systems in
biology.) This system is rather elaborate and complicated to analyse. There-
fore I derive from the complete dde system a much simpler ode system. The
derivation uses a time-scale argument and is given in Appendix B.

2.1. Description of the complete mechanistic model

Individuals can be free, paired or single parent. There are four types of
free individuals: helpful and non-helpful males, and choosy and non-choosy
females. Free individuals mix homogeneously, and the mating rate for a spe-
cific combination of male/female types is equal to the product of a mating rate
constant α (with α > 0) and the corresponding two densities, divided by the
total density of free individuals. One justification for this choice is that it is the
limiting case of a mechanistic model of the encounter process for large popu-
lation densities, or for a large encounter rate constant; cf. Heesterbeek & Metz
(1993). Other mechanisms than this homogeneous mixing case for modelling
the mating rate are also possible, without changing the qualitative behaviour
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of the model.

Pairs are either courting (only in case of a helpful/choosy combination) or
raising offspring. Because non-helpful males cannot mate with choosy females
and do not help non-choosy females, there are three different types of pairs;
courting helpful/choosy, raising helpful/choosy and (only raising) helping/non-
choosy.

Suppose that performing courtship takes τc time units, and raising offspring
takes τr time units (0 < τc and 0 < τr). The time needed for bringing up the
offspring does not depend on the number of parents involved. I assume that
when a female does the raising by herself, she produces κ1 male offspring and
also κ1 female offspring, whereas when the male helps her, κ2 offspring of
each sex are produced (0 < κ1 ≤ κ2). The difference between κ1 and κ2 is not
in the original game (Dawkins, 1976) and its descendants, but it is a natural
extension. Male offspring inherits the strategy type of the father, and female
offspring inherits the type of the mother: “like begets like”. The offspring is
mature and free immediately after weaning.

I assume a constant mortality rate µ for every individual, either free, paired
or single parent. When one of the partners of a pair dies during the prolonged
courtship, the former fiancé(e) returns to the free state, and no offspring is pro-
duced. When one of the partners dies during the raising of offspring, however,
the widow(er) continues as single parent. He or she then produces an amount
of offspring between κ1 and κ2: the longer the late partner was able to help, the
closer the amount of offspring is to κ2 (see Appendix A for details). When the
second (single) parent also dies, no offspring is produced. Consequently, there
are five types of single parents: widows and widowers from helpful/choosy
and helpful/non-choosy matings, respectively, and non-choosy females impreg-
nated by non-helpful males.

The different types of individuals, their states and the transitions between
them are summarised in Fig. 2. Dashed curves indicate transitions of an indi-
vidual when its partner dies (at time τ or τ′). At the column of dotted circles
on the right, individuals and their offspring enter the free state. This column
is equal to the column of solid circles on the left; it has been drawn twice for
reasons of clarity. For the same reason the removal of dead individuals and
the different offspring numbers κ1 and κ2 have not been indicated. The dde
system corresponding to this flow diagram is given in Appendix A: equations
(A.10)–(A.12).

A typical phase portrait projected in (x,y)-space, obtained from numerical
simulations of system (A.10)–(A.12), is shown in Fig. 3. I will explain this phase
portrait in the next section.

2.2. Description of the simplified model

Although the dde model (A.10)–(A.12) is an infinite-dimensional dynamic
system, its projection on the (x,y)-plane for the parameter values used in Fig. 3
behaves very much like a two-dimensional system. This observation indicates
that the system can be simplified considerably. This can be done by assuming
that the time-scale of pair formation and dissociation is short as compared to
the life span of the individuals, i.e. by assuming that α is large, and that τc, τr,
κ1 and κ2 are small. (See the mathematical formulation and the derivation in
Appendix B.) Under this assumption the steady-state distribution of mated
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and free individuals of the different types can be calculated. After rescaling
to frequencies the full system (A.10)–(A.12) boils down to the following two-
dimensional ode system:

dx
dt

= p1 (q1 + q2)− ρ x
dy
dt

= p1 q1 − ρy ,
(4)

where the variables x and y again are the frequencies of helpful males and
choosy females, respectively, and

ρ := p1 (q1 + q2)+ k (1− x)q2 , (5)

where
k := κ1/κ2 (6)

is the ratio of the two reproductive outputs (0 < k ≤ 1), which can be interpreted
as a reproductive disadvantage multiplication factor for single parents.

The three variables p1, q1 and q2 are the frequencies of free helpful males,
free choosy females and free non-choosy females in the population, respect-
ively. They have to satisfy three additional equations:

x = p1

(
1+ (tc + tr) q1 + tr q2

p1 + (1− x)+ q1 + q2

)

y = q1

(
1+ (tc + tr)p1

p1 + (1− x)+ q1 + q2

)

1−y = q2

(
1+ tr (p1 + (1− x))

p1 + (1− x)+ q1 + q2

)
,

(7)

where the new model parameters tc and tr are defined in terms of the limits of
the old model parameters (see Appendix B):

tc := ατc and tr := ατr . (8)

The parameters tc and tr can be interpreted as the time needed for courtship
and for raising, respectively, corresponding to τc and τr, but measured on a
different time-scale.

Notice that (4)–(8) is a two-dimensional ode system, just as the Schuster–
Sigmund model (3). The number of model parameters has been reduced from
six to three: tc, tr and k. This system can be solved numerically by Runge–
Kutta methods, with p1, q1 and q2 being obtained at each time step by solving
equations (7) with a Newton–Raphson root-finding algorithm (Press et al., 1988).

3. Behaviour of the model

Comparison of Fig. 5C with Fig. 3 reveals that, for analogous parameter val-
ues, the behaviour of the simplified system (4)–(8) is very similar to that of
the full system (A.10)–(A.12), as we already anticipated. These pictures also
show that the models can give rise to two alternative stable states: in this case
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there is an interior equilibrium point with polymorphism in both sexes, as well
as a border equilibrium (at y = 0) with only non-choosy females but a poly-
morphic male population. It depends on initial conditions which equilibrium
the systems will attain. This occurs for very reasonable situations, namely when
courtship lasts one-fifth and one-tenth, respectively, of the raising period, and
pairs raise approximately twice as many offspring as single parents.

First I will describe the full spectrum of the simplified model behaviour in a
detailed manner, and then summarise these findings in more biological terms.

3.1. Detailed description of the model behaviour

There are always four trivial equilibria at the corners of Σ2, where the vari-
ables x and y are equal to 0 or 1: if there are exclusively (non-)helpful males
and exclusively (non-)choosy females, nothing changes. If there are only non-
helpful males around (at x = 0), then the frequency of choosy females de-
creases (dy/dt < 0) because the latter cannot mate and reproduce. In a pop-
ulation of exclusively helpful males (x = 1), choosiness also decreases: non-
choosy females reproduce faster because they skip the courtship. Only if the
courtship period is zero, the whole ‘helpful border’ (x = 1) is a line of equi-
libria (dy/dt = 0). If all females are choosy (y = 1) helpfulness increases
(dx/dt > 0) because non-helpful males cannot mate. (See the arrows on the
corresponding borders in Fig. 5.) It is a straightforward exercise to show these
properties analytically.

On the boundary where all females are non-choosy (y = 0) and in the poly-
morphic interior of Σ2 the flow depends on the model parameters. A complete
bifurcation analysis of the simplified system (4)–(8) is beyond the scope of this
paper, but a two-parameter bifurcation diagram for tc and k, with tr fixed at 10,
is shown in Fig. 4. The two horizontal dashed lines represent the limits of ex-
istence of the boundary equilibrium (at y = 0; without choosy females, so tc is
not of any importance here). At the upper line, L0 (which can be calculated ana-
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lytically: k = (4+ tr+
√

4+ t2
r )/(6+4tr) ), the boundary equilibrium hits x = 0.

At the lower line, L1 (located at k = 2/(2+ tr) ), it hits x = 1. For larger tr, the
line L0 shifts downward asymptotically to 1/2, and L1 to 0; both move up to 1
for smaller tr.

The solid curves numbered I to III, indicating the existence limits of interior
equilibria, were calculated using Content, a program for numerical bifurcation
analysis (Kuznetsov et al., 1996). For other values of tr the bifurcation curves
can be at different positions, but topologically the diagram remains the same:
From a biological viewpoint the important types of behaviour are all captured
in Fig. 4.

Together, these lines and curves divide the diagram into six regions, A to F,
with qualitatively different model behaviour (see the collection of phase por-
traits in Fig. 5).

Inside the wedge-shaped region (B ∪ C ∪ D) a stable interior equilibrium
exists, and between the horizontal lines L0 and L1 a stable boundary equilibrium
exists, with both male strategies present. Consequently, in region (B ∪ C ∪ D)
it might pay off for females to be choosy, and in (B∪C∪D∪E) it might pay off
for males to be helpful.

In region A, the trivial equilibrium located at the corner (0,0) is a global at-
tractor for all orbits starting in the interior of Σ2. At curve I, an asymptotically
stable interior equilibrium (a focus) and a saddle point branch off from (0,0)
if one changes parameters such that the system moves from region A into B. If
the system moves from E into C these two interior equilibria branch off from
the boundary equilibrium [in Fig. 5 located at (0.2,0)]. Notice that region C
qualitatively corresponds to Fig. 3. Moving from C into D, the interior saddle
coalesces with the boundary equilibrium (at curve II). The boundary equilib-
rium then becomes a saddle point with its stable manifold on the boundary
and its unstable manifold into the interior, and all orbits starting in the interior
converge to the interior focus. At curve III (moving from D into E) the focus co-
alesces with the boundary equilibrium, which then becomes a global attractor.
If k is decreased below L0 (moving from E into F) the boundary equilibrium is
absorbed by the trivial equilibrium at the corner (1,0).

In regions B and C the stable manifold of the interior saddle point, that
is on both sides connected with the corner (0,1), divides the interior of Σ2

into a basin of attraction of the interior focus, and a basin of attraction of the
boundary equilibrium. The former is surrounded by the latter. The interior
basin of attraction almost touches the boundary x = 1, where the boundary
basin is extremely narrow.

When tc is close to 0 (i.e. a very short courtship period), the proportion
of helpful males in the interior focus is almost 1. Convergence is then very
oscillatory (Fig. 5, panel D already hints in this direction): the frequency of
non-helpful males repeatedly shrinks to small values and grows again while
approaching the equilibrium. Without courtship (tc = 0), the focus is absorbed
by the boundary x = 1, which turns into a line of equilibria. This line attracts
from the interior above some threshold value ỹ ; below this value it repels (see
also Kumm et al., 1996): Non-helpful males are able to invade if the proportion
of choosy females is smaller than ỹ , but after an initial increase they decrease
in frequency again because the proportion of choosy females also increases.
The system then settles on a boundary point with only helpful males, but with a
higher proportion of choosy females than before; from there non-helpful males
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are not able to invade again.
Increasing the courtship period decreases the frequencies of helpful males

and choosy females in the focus. If the system is in region B or C then the focus
will move toward the corner (0,0) or to the boundary equilibrium, respectively,
until the focus coalesces with the saddle point and the two disappear. Starting
in region D, the focus is absorbed by the boundary equilibrium. For longer
courtship periods the boundary equilibrium is the only non-trivial one, provided
k is between L0 and L1.

The effect of a decrease in tr is similar to an increase in tc, except that the
boundary equilibrium also moves to higher x values, whereas its location is
independent of tc. The system behaves roughly the same if the ratio tc/tr and
the product k tr are kept constant.

3.2. Biological interpretation

The model behaviour described above has the following biological interpret-
ation: If it hardly pays for the parents to raise the offspring together (k close
to 1) then male helpfulness as well as female choosiness will not be able to
survive. On the other hand, if the advantage of raising offspring as a pair is
very high (k small), only helpful males survive, and then it also does not pay
females to be choosy. For intermediate advantage of pairs, provided that the
time needed for courtship is considerably smaller than the time needed for
raising offspring, an attracting, totally mixed equilibrium exists. In this stable
polymorphic state, choosy as well as non-choosy females coexist with helpful
as well as non-helpful males. If the advantage of pairs is rather high (k has an
intermediate value and is on the small side; region D in Fig. 4) then every per-
turbation from the state with only non-choosy females will cause the system to
attain the total polymorphic state. These perturbations could originate from
mutation or migration. If, on the other hand, the advantage is rather small (k in-
termediate and largish; region B) then, depending on the initial population state
and on perturbations of the system, two things can happen. Either the popu-
lation state moves toward the stable polymorphism, or toward the trivial state
with only non-helpful males and non-choosy females. For even more interme-
diate advantage of pairs (region C) the alternative of the total polymorphism is
a state where both types of males coexist with only non-choosy females. Sum-
marising: The population converges to the total polymorphic state or to a state
consisting exclusively of non-choosy females. Even in the latter case there can
be a stable polymorphism in male strategies, depending on the exact parameter
values.

4. Discussion

An intrinsic difference between the game-dynamic models (Schuster & Sig-
mund, 1981; Bomze et al., 1983; Maynard Smith & Hofbauer, 1987) and the
present model is seen in the behaviour which arises when there are only non-
helpful males around (at x = 0). In this case, choosy females do not mate, so
they cannot reproduce. Without reproduction, they disappear [at the mortality
rate µ for the complete pair formation model (A.10)–(A.12), and at the scaled
rate kq2 for the simplified model (4)–(8)]. Non-choosy females have positive
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growth terms because of matings with non-helpful males. Consequently, the
proportion of choosy females decreases. In the game-dynamic model, however,
the joint representation of reproduction and parental investment in one payoff
value gives the choosy females a zero growth rate and the non-choosy females a
negative growth rate. This causes the proportion of choosy females to increase
(and, in a fuller model which also considered changes in total population size,
could cause the latter to decrease).

The local behaviour near the interior focus resembles the global behaviour
of the game-dynamic model more closely: clockwise convergence and oscilla-
tions. Both can be explained by the argument that clarifies the lack of stability
of the mixed equilibrium point in Dawkins’ game: with more helpful males
around, non-choosy females do better; with more non-choosy females, non-
helpful males are at an advantage, and so on.

Another new phenomenon is the existence of the boundary equilibrium. In
a population of only non-choosy females, helpful and non-helpful males can
coexist in case of a suitable reproductive advantage for pairs. Remember that
this reproductive advantage (k < 1) is not present in previous game-dynamic
models of the battle of the sexes. Helpful males can invade a non-helpful pop-
ulation if they raise sufficiently more offspring by helping the females, and
non-helpful males can invade a helpful population provided that this repro-
ductive advantage for helpful males is not too large and the period needed for
raising the offspring is sufficiently long. The raising period assists the helpful
males to keep females out of the mating market and to unable females to mate
with non-helpful males.

If there is an interior equilibrium for the mating-delay models, it is a stable
focus, contrary to Maynard Smith’s (1982) claim, that any time delay is destabil-
ising. Without a gain in reproductive output for a helpful male (in other words,
if k = 1), there is no interior equilibrium in the present model; apparently, this
condition more than compensates for destabilisation due to time delays.

In the slightly different version of the pair-formation model presented in
Kumm et al. (1996), the same time-scale argument as applied to the present
model yields the same simplified ode model (4)–(8). In that model paired indi-
viduals die together with their immature offspring of the same sex. The wid-
owed partner, provided it stays alive, continues to raise its offspring of the
opposite sex (possibly after courting a dead body). Several detailed ways of
accounting for the mortality in pairs lead to even more complicated equations
than in the present dde model (A.10)–(A.12), but the global behaviour of the
model remains unaltered.

Despite the added realism of the pair-formation submodel, the model of the
battle of the sexes presented in this paper has serious flaws, like all models
of this caricatural game have (see Schuster & Sigmund, 1981; Maynard Smith,
1982; Eshel & Akin, 1983). For the record I shall mention some of these flaws.
The model discusses the dynamics of the battle of the sexes without taking
sexual inheritance into account, thus implying that the organisms are haploid.
An improvement would be to treat a diploid organism, for example, with two
autosomal loci, one locus of which is expressed only in males and the other
expressed only in females (as in Bomze et al., 1983; Maynard Smith & Hofbauer,
1987). Furthermore, the evolution of male and female strategies is not taken
into consideration. For example, a male strategy that performs courtship but
leaves after conception, thus cheating choosy females, would be a candidate for
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further analysis. In Dawkins’ original battle of the sexes model, the male dur-
ation of courtship and participation in raising offspring are coupled artificially
by assumption. The evolution of courtship duration might better be analysed
as a problem of sexual selection, along the lines laid out by Fisher (1930) and
Zahavi (1975). Also for the participation in rearing offspring, an analysis using
continuous strategy sets might be preferable (e.g. Motro, 1994, and the refer-
ences therein). A complete understanding of the parental investment conflict
addressed by the battle of the sexes will surely have to take into account the
coevolution of male and female strategies.

But this is not what I want to stress with this paper. Of course one can
never get full realism. The present model formulation and the consequent res-
ults show that, in the analysis of evolutionary games, one should pay careful
attention to the specific mechanisms involved in the conflict: Predictions from
a whole class of models derived by the traditional approach of game-dynamic
equations can fundamentally change by adding a most elementary further as-
sumption about individual life history. The message of this paper is that it is
fruitful to derive simple models for evolutionary games starting with more com-
plex, mechanistic building blocks. From within the framework that results from
those buildings blocks, one can try to derive more simple models, by various
kinds of limiting procedures such as time-scale arguments. Clear assumptions
then relate the simple models to the primary, more complex ones. As an added
advantage one can interpret the resulting equations in real, mechanistic terms.
By starting immediately with a simple framework at a high phenomenological
level, like the traditional approach of game-dynamic equations, one can easily
end up in a class of models from which it is impossible to generalise to the full
spectrum of behaviour of the biological system that one wishes to study.

The material presented here has benefited greatly from many discussions with Odo
Diekmann and Hans Metz, who also read the paper thoroughly. I am also indebted to
Yuri Kuznetsov and Victor Levitin who helped with the bifurcation analysis, to Patsy
Haccou and to Ron Otten who gave linguistic advice. This work was supported by the
Life Sciences Foundation (SLW), which is subsidized by the Netherlands Organization
for Scientific Research (NWO).
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Appendix A Formulation of the full mechanistic
model

In this appendix I will derive a delay-differential equation (dde) system de-
scribing the dynamics of the complete pair formation model that was sketched
in the main text.

Define ui(t) and vj(t) to be the densities at time t of free males and fe-
males following strategies i and j, respectively. (For males, subscript 1 de-
notes helpful and 2 non-helpful; for females, 1 denotes choosy and 2 non-
choosy.) The density of the total amount of unpaired males is u(t), where
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u(t) := u1(t) + u2(t), and the density of all free females is v(t), where
v(t) := v1(t)+ v2(t).

Also define wc
11(t) as the density of pairs of helpful males and choosy fe-

males that are courting at time t, and wr
ij(t) [where (i, j) ∈ {(1,1), (1,2)}] as

the densities of pairs of type-i males and type-j females that are raising off-
spring at time t.

Additionally, u1j(t) (where j ∈ {1,2}) denotes the density at time t of help-
ful males (widowers) that started raising offspring together with a type-j female,
but continue on their own, because the female mate has died. In the same way,
v1j(t) (where j ∈ {1,2}) denotes the density of type-j females (widows) raising
offspring on their own, because the (helpful) male has died.

Finally, v22(t) denotes the density at time t of non-choosy females raising
offspring on their own, because they mated with non-helpful males.

When one of the partners of a pair dies at, say, τ time units after they
started raising offspring, the widow(er) produces κ(τ) offspring of each sex.
Here κ(τ) is a linear interpolation between κ(0) = κ1 and κ(τr) = κ2:

κ(τ) := κ1 + (κ2 − κ1)
τ
τr

for 0 < τ < τr . (A.1)

I assume that mating between a type-i male and a type-j female occurs at a
rate mij = αij uivj/(u+v). Here, αij is a mating rate constant, equal to zero
for a non-helpful/choosy mating and equal to α > 0 for other combinations.
For all but the non-helpful/choosy mating,

mij(t) := α
ui(t)vj(t)
u(t)+ v(t) , (i, j) ∈ {(1,1), (1,2), (2,2)} . (A.2)

In the main text (see also Fig. 2) I specified the widowed individuals separ-
ately. I will denote them by the variables u11, u12, v11 and v12, for widowers
from helpful/choosy pairs, widowers from helpful/non-choosy pairs, widows
from helpful/choosy pairs and widows from helpful/non-choosy pairs, respect-
ively. In this appendix I will put raising individuals in one class per male/female
strategy combination. The mortality and consequently lower reproductive out-
put of the single parents can be accounted for by multiplying the inflow rates of
the classes of raising individuals with the expected survival probabilities dur-
ing the raising period, and the corresponding reproductive outputs, averaged
over the time the partner passed away.

Let us call the density per unit time of parents that have just survived the
raising period as a pair wr

1j(t)
−. In the same way, the density per unit time of

individuals that have just survived the raising period as a widow(er) can be de-
noted as x1j(t)−, with x ∈ {u,v}. The outflows of the classes of pairs wr

1j(t)
−

are equal to the corresponding inflows τr time units ago, multiplied by the
probability that both parents survived the raising period. The outflows of
widow(er)s x1j(t)− are equal to the corresponding inflow τr time units ago,
multiplied by the probability that this parent survived and its partner died. No-
tice that for the inflow of helpful/choosy pairs we also have to account for (the
mortality in) the courtship period, i.e. the inflow is thenm11(t−(τc+τr)) e−2µτc ,
as compared with m12(t − τr) for the helpful/non-choosy combination. Sum-
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marising, we have

wr
11(t)− = m11(t − τcr) e−2µτc e−2µτr

wr
12(t)− = m12(t − τr) e−2µτr

x11(t)− = m11(t − τcr) e−2µτc e−µτr (1− e−µτr)
x12(t)− = m12(t − τr) e−µτr (1− e−µτr) ,

(A.3)

with x ∈ {u,v}, and
τcr := τc + τr . (A.4)

The production of offspring that have just been weaned by widowed parents
can be calculated by multiplying the corresponding inflow with the expected
reproductive output for a widow(er). To calculate the expected reproductive
output we integrate, over the raising period (0 < τ < τr), the product of the
reproductive output if the partner died after τ time units (κ(τ)) and the prob-
ability that the partner dies after τ time units (µ e−µτ dτ) and the probability
that the widow(er) itself survives raising offspring (e−µτr ). This yields∫ τr

0
κ(τ)µ e−µτ e−µτr dτ

= e−µτr

(
κ1 − κ2 e−µτr + κ2 − κ1

µ τr
(1− e−µτr)

)
.

(A.5)

Consequently, the production of offspring by widow(er)s from helpful/choosy
and helpful/non-choosy matings, denoted as κ̃x11 and κ̃x12, respectively, is

κ̃x11(t) := m11(t − τcr) e−2µτc e−µτr

×
(
κ1 − κ2 e−µτr + κ2 − κ1

µ τr
(1− e−µτr)

)
κ̃x12(t) := m12(t − τr) e−µτr

×
(
κ1 − κ2 e−µτr + κ2 − κ1

µ τr
(1− e−µτr)

)
,

(A.6)

with x ∈ {u,v}.
With the help of (A.3) and (A.6) we can calculate that the inflow at time t

in the class of free helpful males from the classes of helpful/choosy matings,
counting surviving pairs as well as widowers, and all their offspring, is equal
to:

wr
11(t)

− +u11(t)− + κ2wr
11(t)

− + κ̃u11(t)+ κ̃v11(t)

= m11(t − τcr) e−2µτc e−µτr

×
(
e−µτr + (1− e−µτr)+ κ2 e−µτr

+ 2κ1 − 2κ2 e−µτr + 2
κ2 − κ1

µ τr
(1− e−µτr)

)
= m11(t − τcr) e−2µτc e−µτr (1+K) ,

(A.7)

where
K := 2κ1 − κ2 e−µτr + 2

κ2 − κ1

µ τr

(
1− e−µτr

)
. (A.8)



18 S.D. MYLIUS

is the reproductive output of a surviving parent from either a helpful/choosy-
or a helpful/non-choosy mating, averaged over the survivorship of the part-
ner. The same amount from the classes of helpful/choosy matings as in (A.7)
flows into the class of free choosy females. And by the same argument we
can calculate that from the classes of helpful/non-choosy matings an amount
m12(t − τr) e−µτr (1+K) flows into the classes of free helpful males as well as
free non-choosy females.

From non-helpful/non-choosy matings, an amountm22(t−τr) e−µτr (1+κ1)
flows into the class of free non-choosy females, and m22(t − τr) e−µτr κ1 into
the class of non-helpful males.

The only remaining cross-term is from courting helpful/choosy pairs, that
disappear due to mortality of the male or the female partner, at a rate 2µ.
Half of this mortality term [i.e. the surviving fiancé(e)s] flows back into the free
helpful male- and the free choosy female class.

After τr time units, u11(t) = v11(t) and u12(t) = v12(t). So after τr time
units we can define for males as well as for females the densities of mated
individuals

w11(t) := wr
11(t)+u11(t) = wr

11(t)+ v11(t)
w12(t) := wr

12(t)+u12(t) = wr
12(t)+ v12(t) .

(A.9)

Now we are ready to combine all ingredients described above, and obtain a
dde system for the dynamics of the densities of free individuals u1(t), u2(t),
v1(t) and v2(t), of the courting individualswc

11(t), and of the raising individu-
als w11(t), w12(t) and v22(t).

du1(t)
dt

= −m11(t)+m11(t − τcr) e−µ(2τc+τr) (1+K) + µwc
11(t)

−m12(t)+m12(t − τr) e−µτr (1+K) − µu1(t)
du2(t)
dt

= m22(t − τr) e−µτr κ1 − µu2(t)

dv1(t)
dt

= −m11(t)+m11(t − τcr) e−µ(2τc+τr) (1+K) + µwc
11(t)

− µ v1(t)
dv2(t)
dt

= −m12(t)+m12(t − τr) e−µτr (1+K)
−m22(t)+m22(t − τr) e−µτr (1+ κ1) − µ v2(t)

dwc
11(t)
dt

= m11(t)−m11(t − τc) e−2µτc − 2µwc
11(t)

dw11(t)
dt

= m11(t − τc) e−2µτc −m11(t − τcr) e−µ(2τc+τr) − µw11(t)

dw12(t)
dt

= m12(t)−m12(t − τr) e−µτr − µw12(t)

dv22(t)
dt

= m22(t)−m22(t − τr) e−µτr − µ v22(t) ,
(A.10)

with

mij(t) = α
ui(t)vj(t)
u(t)+ v(t) (A.11)
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and
K = 2κ1 − κ2 e−µτr + 2

κ2 − κ1

µ τr

(
1− e−µτr

)
. (A.12)

The fractions of all helpful males and choosy females in the population at
time t, x(t) and y(t), respectively, are

x(t) = u1(t)+wc
11(t)+w11(t)+w12(t)

M(t)

y(t) = v1(t)+wc
11(t)+w11(t)
F(t)

,
(A.13)

where

M(t) := u1(t)+u2(t)+wc
11(t)+w11(t)+w12(t)

F(t) := v1(t)+ v2(t)+wc
11(t)+w11(t)+w12(t)+ v22(t)

(A.14)

are the total densities of males and females, respectively.

From (A.10) it is clear that

d
dt
M(t) = d

dt
[
u1(t)+u2(t)+wc

11(t)+w11(t)+w12(t)
]

= Km11(t − τcr) e−µ(2τc+τr) +Km12(t − τr) e−µτr

+ κ1m22(t − τr) e−µτr − µM(t)
(A.15)

and

d
dt
F(t) = d

dt
[
v1(t)+ v2(t)+wc

11(t)+w11(t)+w12(t)+ v22(t)
]

= Km11(t − τcr) e−µ(2τc+τr) +Km12(t − τr) e−µτr

+ κ1m22(t − τr) e−µτr − µ F(t) .
(A.16)

Then it immediately follows that

d
dt
[
M(t)− F(t)

]
= −µ

(
M(t)− F(t)

)
, (A.17)

from which we can conclude that

M(t)− F(t) =
(
M(0)− F(0)

)
e−µt , (A.18)

so the manifold of equal male and female densities is invariant and attracting.
Thus, if the total densities of males and females are initially equal, they will
remain equal.

Notice that equations (A.10) are generally only valid τcr time units after time
zero, unless we choose the initial conditions such that for all t ∈ (−τcr,0) we
have u11(t) = v11(t) and u12(t) = v12(t). But this is exactly what was done in
the numerical simulations shown in Fig. 3.

It is important to realise that the densities acting as state variables in the full
dde system (A.10)–(A.12) cannot simply be scaled to frequencies. In ode sys-
tems such a scaling of variables is equivalent to a change in time-scale; the orbit
in state space is preserved and only the information about the total population
size is lost. For the dde system considered here, the densities are contained in
the delay terms (see equations (A.10)), while a change in time-scale also affects
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the time delay.

Finally, notice that there is no density dependence in the model; in the long
run the values of the parameters produce an exponentially growing or an ex-
ponentially decaying population.

We can integrate system (A.10)–(A.12) numerically using the Solver pro-
gram by Gurney & Tobia (1995). The three mating rates mij(t) are stored as
history variables (see also Nisbet, 1996) in the Solver equations. Initial con-
ditions of the system are set by entering (x(0),y(0)) and the total population
size. The distribution over free and mated individuals at and before t = 0,
is calculated assuming that the total number of males is equal to the total
number of females, and using ‘quasi-steady-state’ conditions, with the help of
equations (7) and a Newton–Raphson root-finding algorithm (Press et al., 1988).

Appendix B Derivation of the simplified model

In this appendix I will derive the ode system (4)–(8) that is presented in the
main text.

First define the densities of male and female types 1 and 2, respectively, as
follows:

U1(t) := u1(t)+wc
11(t)+w11(t)+w12(t)

U2(t) := u2(t)
V1(t) := v1(t)+wc

11(t)+w11(t)
V2(t) := v2(t)+w12(t)+ v22(t) .

(B.1)

(So U1 + U2 = M and V1 + V2 = F .) To get the time derivatives of (B.1) we
substitute from (A.10), and after cancelling most of the terms we get

dU1(t)
dt

= Km11(t − τcr) e−µ(2τc+τr) +Km12(t − τr) e−µτr − µU1(t)

dU2(t)
dt

= κ1m22(t − τr) e−µτr − µU2(t)

dV1(t)
dt

= Km11(t − τcr) e−µ(2τcr+τr) − µ V1(t)

dV2(t)
dt

= Km12(t − τr) e−µτr + κ1m22(t − τr) e−µτr − µ V2(t) ,
(B.2)

with mij(t) and K as defined by (A.2) and (A.8), respectively.

The mathematical translation of the assumption that pair formation and
dissociation is on a shorter time-scale than the life span of individuals, is to
take the limits

α →∞ , τ? ↓ 0 and κi ↓ 0 (B.3)

(for ? ∈ {c, r} and i ∈ {1,2}) in such a way that ατ? and ακi have finite limits.
Having applied these limits we define the new parameters

t? := ατ? and ki := ακi . (B.4)

(cf. Heesterbeek & Metz 1993.)

Additionally, applying these limits we find m11(t − τcr)→m11(t), m12(t −
τr) → m12(t), m22(t − τr) → m22(t), e−µ(2τc+τr) → 1, e−µτr → 1, and, using
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Taylor series expansion, K → κ2. So on the long time-scale we have

dU1(t)
dt

= κ2m11(t)+ κ2m12(t)− µU1(t)

dU2(t)
dt

= κ1m22(t) − µU2(t)

dV1(t)
dt

= κ2m11(t) − µ V1(t)

dV2(t)
dt

= κ2m12(t)+ κ1m22(t)− µ V2(t) .

(B.5)

Taking the limits α →∞ and τ? ↓ 0 as in (B.3)–(B.4), we also have wc
11(t)→

τcm11(t), w11(t)→ τrm11(t), w12(t)→ τrm12(t), v22(t)→ τrm22(t), and

τ?mij(t) → t?
ui(t)vj(t)
u(t)+ v(t) (B.6)

[where (?, i, j) ∈ {(c,1,1), (r,1,1), (r,1,2), (r,2,2)}]. Consequently, using (B.1),

U1 = u1

(
1+ tcr

v1

u+ v + tr
v2

u+ v

)
U2 = u2

V1 = v1

(
1+ tcr

u1

u+ v

)
V2 = v2

(
1+ tr

u1

u+ v + tr
u2

u+ v

)
,

(B.7)

where we write
tcr := tc + tr . (B.8)

We assume that
M = F =: N (B.9)

[see equation (A.18) for justification] and define the frequencies

P1 := U1

N
, P2 := U2

N
, Q1 := V1

N
, Q2 := V2

N
,

p1 := u1

N
, p2 := u2

N
, q1 := v1

N
, q2 := v2

N
.

(B.10)

From (B.5) it follows easily that

dP1(t)
dt

= k2 p1q1 + k2 p1q2

p1 + p2 + q1 + q2
− ν P1

dP2(t)
dt

= k1 p2q2

p1 + p2 + q1 + q2
− ν P2

dQ1(t)
dt

= k2 p1q1

p1 + p2 + q1 + q2
− ν Q1

dQ2(t)
dt

= k2 p1q2 + k1 p2q2

p1 + p2 + q1 + q2
− ν Q2 ,

(B.11)

where

ν := k2 p1q1 + k2 p1q2 + k1 p2q2

p1 + p2 + q1 + q2
. (B.12)
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Division of the right-hand sides of system (B.11)–(B.12) by k2/(p1+p2+q1+q2)
introduces only a change in velocity, simplifies the system, and reduces the
number of parameters by one: k1 and k2 can be combined in one parameter,

k := k1/k2 . (B.13)

By assumption, 0 < k ≤ 1. On the manifold satisfying P1+P2 = 1 ∧ Q1+Q2 = 1
[which is invariant and attracting: see equation (A.18)] the new system can be
written as the two-dimensional ode system (4)–(8) with variables

x := P1

y := Q1 .
(B.14)

On this manifold, the pi and qi have to satisfy

x = p1

(
1+ tcr q1 + tr q2

p1 + p2 + q1 + q2

)
1− x = p2

y = q1

(
1+ tcr p1

p1 + p2 + q1 + q2

)

1−y = q2

(
1+ tr p1 + tr p2

p1 + p2 + q1 + q2

)
.

(B.15)

By substituting 1 − x for p2 (remember that type-2 males are always free)
in (B.15), we arrive at the equations (7).
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